OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 13465–13475

Polarized photoluminescence from single GaN nanorods: Effects of optical confinement

Hung-Ying Chen, Yu-Chen Yang, Hon-Way Lin, Shih-Cheng Chang, and Shangjr Gwo  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 13465-13475 (2008)
http://dx.doi.org/10.1364/OE.16.013465


View Full Text Article

Enhanced HTML    Acrobat PDF (3857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By measuring linearly polarized photoluminescence (PL) from single, isolated gallium nitride (GaN) nanorods with the rod diameters in the subwavelength regime (30–90 nm), we present clear evidence for size dependence of polarization anisotropy. The maximum polarization ratio at room temperature (~0.9 with emission and excitation light polarized parallel to the long axis of nanorod) occurs at the rod diameter of ~40 nm. The experimental data are compared with the recent theoretical model proposed for thick semiconductor nanowires. It is concluded that the optical confinement effects in this size regime play an important role in the observed giant polarization anisotropy. Furthermore, we have performed a temperature-dependent study of polarized PL to show the importance of internal emission anisotropy at low temperatures.

© 2008 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(160.4236) Materials : Nanomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Materials

History
Original Manuscript: July 3, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 12, 2008
Published: August 15, 2008

Citation
Hung-Ying Chen, Yu-Chen Yang, Hon-Way Lin, Shih-Cheng Chang, and Shangjr Gwo, "Polarized photoluminescence from single GaN nanorods: Effects of optical confinement," Opt. Express 16, 13465-13475 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, "One-dimensional magneto-excitons in GaAs/AlxGa1-xAs quantum wires," Phys. Rev. Lett. 63, 2124-2127 (1989). [CrossRef] [PubMed]
  2. U. Bockelmann and G. Bastard, "Interband absorption in quantum wires. I. Zero-magnetic-field case," Phys. Rev. B 45, 1688-1699 (1992). [CrossRef]
  3. P. Ils, Ch. Gréus, A. Forchel, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, "Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory," Phys. Rev. B 51, 4272-4277 (1995). [CrossRef]
  4. T. Someya, H. Akiyama, and H. Sakaki, "Laterally squeezed excitonic wave function in quantum wires," Phys. Rev. Lett. 74, 3664-3667 (1995). [CrossRef] [PubMed]
  5. H. Akiyama, T. Someya, and H. Sakaki, "Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method," Phys. Rev. B 53, R4229-R4232 (1996). [CrossRef]
  6. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly polarized photoluminescence and potodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001). [CrossRef] [PubMed]
  7. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B,  107, 8816-8828 (2003). [CrossRef]
  8. J. Qi, A. M. Belcher, and J. M. White, "Spectroscopy of individual silicon nanowires," Appl. Phys. Lett. 82, 2616-2618 (2003). [CrossRef]
  9. D. Kulik, H. Htoon, C. K. Shih, and Y. Li, "Photoluminescence properties of single CdS nanorods," J. Appl. Phys. 95, 1056-1063 (2004). [CrossRef]
  10. C. X. Shan, Z. Liu, and S. K. Hark, "Photoluminescence polarization in individual CdSe nanowires," Phys. Rev. B 74, 153402 (2006). [CrossRef]
  11. P. C. Sercel and K. J. Vahala, "Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects," Appl. Phys. Lett. 57, 545-547 (1990). [CrossRef]
  12. P. C. Sercel and K. J. Vahala, "Polarization dependence of optical absorption and emission in quantum wires," Phys. Rev. B 44, 5681-5691 (1991). [CrossRef]
  13. C. R. McIntyre and L. J. Sham, "Theory of luminescence polarization anisotropy in quantum wires," Phys. Rev. B 45, 9443-9446 (1992). [CrossRef]
  14. M. P. Persson and H. Q. Xu, "Giant polarization anisotropy in optical transitions of free-standing InP nanowires," Phys. Rev. B 70, 161310(R) (2004). [CrossRef]
  15. M. Califano and A. Zunger, "Anisotropy of interband transitions in InAs quantum wires: An atomistic theory," Phys. Rev. B 70, 165317 (2004). [CrossRef]
  16. A. V. Maslov and C. Z. Ning, "Radius-dependent polarization anisotropy in semiconductor nanowires," Phys. Rev. B 72, 161310(R) (2005). [CrossRef]
  17. H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in semiconducting and metallic nanowires," Phys. Rev. B 72, 115308 (2005). [CrossRef]
  18. H. E. Ruda and A. Shik, "Polarization-sensitive optical phenomena in thick semiconducting nanowires," J. Appl. Phys. 100, 024314 (2006). [CrossRef]
  19. J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, "Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy," Appl. Phys. Lett. 88, 213106 (2006). [CrossRef]
  20. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy," Appl. Phys. Lett. 89, 243105 (2006). [CrossRef]
  21. P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN," Phys. Rev. B 70, 035210 (2004). [CrossRef]
  22. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Elsevier Butterworth-Heinemann, 1984).
  23. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Academic, 1978).
  24. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).
  25. H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, "Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region," Opt. Express 16, 8106-8116 (2008). [CrossRef] [PubMed]
  26. B. Gil and O. Briot, "Internal structure and oscillator strengths of excitons in strained α-GaN," Phys. Rev. B 55, 2530-2534 (1997). [CrossRef]
  27. M. A. Reshchikov and H. Morkoç "Luminescence properties of defects in GaN," J. Appl. Phys. 97, 061301 (2005). [CrossRef]
  28. H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, "Experimental energy difference between heavy- or light-hole valence band and crystal-field split-off-hole valence band in AlxGa1??xN," Appl. Phys. Lett. 89, 251107 (2006). [CrossRef]
  29. S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, "Temperature dependence of polarized electroluminescence from nonpolor m-plane InGaN-based light emitting diodes," Appl. Phys. Lett. 91, 171110 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3573 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited