OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13593–13598

Low-loss air-core polarization maintaining terahertz fiber

Guobin Ren, Yandong Gong, Ping Shum, Xia Yu, JuanJuan Hu, Guanghui Wang, Michael Ong Ling Chuen, and Varghese Paulose  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13593-13598 (2008)
http://dx.doi.org/10.1364/OE.16.013593


View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a low-loss air-core polarization maintaining polymer fiber for terahertz (THz) wave guiding. The periodic arrangement of square holes with round corners in the cladding offers a bandgap effect for mode guiding. Numerical simulations show that the bandgap effect repels the modal power from the absorbent background polymers, resulting in a significant suppression of absorption loss of the polymers by a factor of more than 25. The phase-index birefringence of the proposed THz fiber is in the order of 10-3.

© 2008 Optical Society of America

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(160.5470) Materials : Polymers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: April 4, 2008
Revised Manuscript: June 5, 2008
Manuscript Accepted: June 5, 2008
Published: August 20, 2008

Citation
Guobin Ren, Yandong Gong, Ping Shum, Xia Yu, JuanJuan Hu, Guanghui Wang, Michael Ong Ling Chuen, and Varghese Paulose, "Low-loss air-core polarization maintaining terahertz fiber," Opt. Express 16, 13593-13598 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). [CrossRef]
  2. J. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5263. [CrossRef] [PubMed]
  3. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  4. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  5. S. P. Jamison, R. W. McCowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  6. H. Han, H. Park, M. Cho, and J. Kim, "THz pulse propagation in plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  7. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Lett. 43, L317-L319 (2004). [CrossRef]
  8. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  9. T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, "Terahertz Sources and Detectors and Their Application to Biological Sensing," Phil. Trans. R. Soc. Lond. A 362, 365-377 (2004). [CrossRef]
  10. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 7-12 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-1-7. [CrossRef] [PubMed]
  11. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  12. Y. S. Jin, G. L. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49,513-517 (2006).
  13. F. Poletti and D. J. Richardson, "Hollow-core photonic bandgap fibers based on a square lattice cladding," Opt. Lett. 32, 2282-2284 (2007). [CrossRef] [PubMed]
  14. M. Digonnet, H. Kim, J. Shin, S. Fan, and G. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864-1872 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1864. [CrossRef] [PubMed]
  15. A. W. Snyder and J. D. LoveOptical Waveguide Theory (Chapman and Hall, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited