OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13676–13684

Tunable single-mode photonic lasing from zirconia inverse opal photonic crystals

Yoshiaki Nishijima, Keisei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Hiroaki Misawa, Mitsuru Maeda, and Masashi Minaki  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13676-13684 (2008)
http://dx.doi.org/10.1364/OE.16.013676


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lasing from zirconia inverse opal photonic crystal structures infiltrated by solutions of rhodamine dyes was found to exhibit single-mode lasing peaks with spectral width less than 1 nm and quality factor in excess of 4000. The lasing occurs within the approximate range of high-reflectance spectral region associated with photonic stop band along 〈111〉 crystallographic direction, but its wavelength is not fixed to the corresponding Bragg wavelength of the periodic structure, and depends on the spectral position of the gain band. This lasing regime can be useful for realizing tunable single-mode photonic crystal lasers.

© 2008 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(160.3380) Materials : Laser materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 25, 2008
Manuscript Accepted: August 17, 2008
Published: August 20, 2008

Citation
Hiroaki Misawa, Yoshiaki Nishijima, Keisei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Mitsuru Maeda, and Masashi Minaki, "Tunable single-mode photonic lasing from zirconia inverse opal photonic crystals," Opt. Express 16, 13676-13684 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd ed. (Princeton University Press, Princeton and Oxford, 2008).
  4. N. A. Clark, A. J. Hurd, and B. J. Ackerson, "Single colloidal crystals," Nature 281, 57-60 (1979). [CrossRef]
  5. H. Fudouzi and Y. Xia, "Photonic papers and inks: color writing with colorless materials," Adv. Mater. 15, 892-896 (2003). [CrossRef]
  6. H. Fudouzi, "Fabricating high-quality opal films with uniform structure over a large area." J Colloid. Interface Sci. 275, 277-283 (2004), http://dx.doi.org/10.1016/j.jcis.2004.01.054. [CrossRef] [PubMed]
  7. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-40 (2000). [CrossRef] [PubMed]
  8. S. A. Rinne, F. García-Santamaría, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nature Photon. 2, 52 - 56 (2008). [CrossRef]
  9. L. Bechger, P. Lodahl, and W. L. Vos, "Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals." J Phys. Chem. B 109, 9980-9988 (2005), http://dx.doi.org/10.1021/jp047489t.
  10. A. Brzezinski, J.-T. Lee, J. D. Slinker, G. G. Malliaras, P. V. Braun, and P. Wiltzius, "Enhanced emission from fcc fluorescent photonic crystals," Phys. Rev. B(Condensed Matter and Materials Physics) 77, 106 (2008), http://link.aps.org/abstract/PRB/v77/e233106. [CrossRef]
  11. F. Jin, Y. Song, X.-Z. Dong, W.-Q. Chen, and X.-M. Duan, "Amplified spontaneous emission from dyedoped polymer film sandwiched by two opal photonic crystals," Appl. Phys. Lett. 91, 031109 (2007), http://link.aip.org/link/?APL/91/031109/1. [CrossRef]
  12. S. Frolov, Z. Vardeny, A. Zakhidov, and R. Baughman, "Laser-like emission in opal photonic crystals," Opt. Commun. 162, 241-246 (1999). [CrossRef]
  13. M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. Zakhidov, and R. H. Baughman, "Photonic versus random lasing in opal single crystals," Synthetic Metals 116, 485 - 491 (2001). [CrossRef]
  14. S. Furumi, H. Fudouzi, H. Miyazaki, and Y. Sakka, "Flexible polymer colloidal-crystal lasers with a lightemitting planar defect," Adv. Mater. 19, 2067-2072 (2007). [CrossRef]
  15. F. Jin, C.-F. Li, X.-Z. Dong,W.-Q. Chen, and X.-M. Duan, "Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241,101 (2006). [CrossRef]
  16. V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835 - 840 (1968).
  17. D. Wiersma, M. van Albada, and A. Lagendijk, "Coherent backscattering of light from an amplifying medium," Phys. Rev. Lett. 75, 1739 - 1742 (1995). [CrossRef] [PubMed]
  18. C. Vanneste, P. Sebbah, and H. Cao, "Lasing with Resonant Feedback in Weakly Scattering Random Systems," Phys. Rev. Lett. 98, 143,902/1-4 (2007). [CrossRef]
  19. P. Anderson, "Absence of Diffusion in Certain Random Lattices," Phys. Rev. 109, 1492 - 1505 (1958). [CrossRef]
  20. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436 - 438 (1994). [CrossRef]
  21. P. Sebbah and C. Vanneste, "Random laser in the localized regime," Phys. Rev. B 66, 144,202/1-10 (2002).
  22. M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. Zakhidov, and R. H. Baughman, "Photonic versus random lasing in opal single crystals," Synth. Metals 116, 485 - 491 (2001). [CrossRef]
  23. M. Shkunov, Z. Vardeny, M. DeLong, R. Polson, A. Zakhidov, and R. Baughman, "Tunable, gap-state lasing in switchable directions for opal photonic crystals," Adv. Funct. Mater. 12, 21-26 (2002). [CrossRef]
  24. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, "Resonance-driven random lasing," Nature Photon. 2, 429-432 (2008). [CrossRef]
  25. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).
  26. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. T., and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 979-988 (2007). [CrossRef]
  27. H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys. 38, 5101 - 5104 (1999). [CrossRef]
  28. R. Polson, A. Chipouline, and Z. Vardeny, "Random lasing in �?�-conjugated films and infiltrated opals," Adv. Mater. 13, 760-764 (2001). [CrossRef]
  29. R. Polson and Z. Vardeny, "Organic random lasers in the weak-scattering regime," Phys. Rev. B 71, 045,205 (2005).
  30. L. Teh, C. Wong, H. Yang, S. Lau, and S. Yu, "Lasing in electrodeposited ZnO inverse opal," Appl. Phys. Lett. 91, 161,116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited