OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13713–13719

Photonic nanojet-enabled optical data storage

Soon-Cheol Kong, Alan Sahakian, Allen Taflove, and Vadim Backman  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13713-13719 (2008)
http://dx.doi.org/10.1364/OE.16.013713


View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that our recently reported microwave photonic jet technique for detection of deeply subwavelength pits in a metal substrate can be extended to optical wavelengths for purposes of high-density data storage. Three-dimensional finite-difference time-domain computational solutions of Maxwell’s equations are used to optimize the photonic nanojet and pit configuration to account for the Drude dispersion of an aluminum substrate in the spectral range near λ=400 nm. Our results show that nanojet-illuminated pits having lateral dimensions of only 50 nm×80 nm yield a contrast ratio 27 dB greater than previously reported using a lens system for pits of similar area. Such pits are much smaller than BluRay™ features. The high detection contrast afforded by the photonic nanojet could potentially yield significant increases in data density and throughput relative to current commercial optical data-storage systems while retaining the basic geometry of the storage medium.

© 2008 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(230.3990) Optical devices : Micro-optical devices
(290.1350) Scattering : Backscattering

ToC Category:
Optical Data Storage

History
Original Manuscript: June 5, 2008
Revised Manuscript: July 12, 2008
Manuscript Accepted: July 16, 2008
Published: August 21, 2008

Citation
Soon-Cheol Kong, Alan Sahakian, Allen Taflove, and Vadim Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. M. Sales, "Smallest focal spot," Phys. Rev. Lett. 81, 3844-3847 (1998). [CrossRef]
  2. C. J. R. Sheppard, "Fundamentals of super resolution," Micron 38, 165-169 (2007). [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  4. C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, "High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system," Jpn. J. Appl. Phys 46, 3889-3893 (2007). [CrossRef]
  5. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, "Spherical nanosized focal spot unravels the interior of cells," Nat. Methods 5, 539-544 (2008). [CrossRef] [PubMed]
  6. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005). [CrossRef] [PubMed]
  8. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005). [CrossRef] [PubMed]
  9. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005). [CrossRef]
  10. Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31,196-198, (2006).
  11. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  12. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  13. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007). [CrossRef] [PubMed]
  14. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007). [CrossRef]
  15. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007). [CrossRef] [PubMed]
  16. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007). [CrossRef] [PubMed]
  17. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008). [CrossRef] [PubMed]
  18. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008). [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).
  20. S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microw. Wirel. Compon. Lett. 18, 4-6 (2008). [CrossRef]
  21. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994). [CrossRef]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099 (1983). [CrossRef] [PubMed]
  23. J. A. C. Veerman, A. J. H. Wachters, A. M. van der Lee, and H. P. Urbach, "Rigorous 3D calculation of effects of pit structure in TwoDOS systems," Opt. Express 15, 2075-2097 (2007). [CrossRef] [PubMed]
  24. Online: http://www.optotronics.com/b-lithium-ion.php
  25. Online: http://statusreports.atp.nist.gov/reports/94-01-0115.htm

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited