OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13857–13870

Nano-scale three dimensional surface relief features using single exposure counter-propagating multiple evanescent waves interference phenomenon

Vadakke Matham Murukeshan, Jeun Kee Chua, Sia Kim Tan, and Qun Yin Lin  »View Author Affiliations

Optics Express, Vol. 16, Issue 18, pp. 13857-13870 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, fabrication of nano-scale 3-D features by total internal reflection generated single exposure counter propagating multiple evanescent waves interference lithography (TIR-MEWIL) in a positive tone resist is investigated numerically. Using a four incident plane waves configuration from an 364nm wavelength illumination source, the simulated results indicate that the proposed technique shows potential in realizing periodic surface relief features with diameter as small as 0.08λ and height-to-diameter aspect ratio as high as 10. It is also demonstrated that the sensitivity of multiple evanescent waves’ interference depends on the polarization and phase of the incident plane waves, and can be tailored to obtain different geometry features. A modified cellular automata algorithm has been employed to simulate three-dimensional photoresist profiles that would result from exposure to the studied evanescent waves interference configurations.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 5, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 10, 2008
Published: August 22, 2008

Vadakke Matham Murukeshan, Jeun Kee Chua, Sia Kim Tan, and Qun Yin Lin, "Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon," Opt. Express 16, 13857-13870 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, "Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves," Appl. Phys. Lett. 86, 051102 (2005). [CrossRef]
  2. P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester," Opt. Lett. 28, 2375-2377 (2003). [CrossRef]
  3. S. Sainov, "Nanoscale surface-wave holographic recording," J. Phys. Conden. Matter 11, 9857-9860 (1999).
  4. S. Sainov, A. Espanet, C. Ecoffet, and D.-J. Lougnot, "High spatial frequency evanescent wave holographic recording in photopolymers," J. Opt. A: Pure and Applied Optics 5, 142-146 (2003). [CrossRef]
  5. S. Sainov and R. Stoycheva-Topalova, "Total Internal reflection holographic recording in very thin films," J. Opt. A: Pure and Applied Optics 2, S117-S120 (2000). [CrossRef]
  6. S. Sainov, N. Tomova, and V. Dragostinova, "Real time evanescent wave holograms," J. Mod. Opt. 35, 155-157 (1988). [CrossRef]
  7. J. C. Martinez-Anton, "Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography," J. Opt A: Pure and Applied Optics 8, S213-S218 (2006). [CrossRef]
  8. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, "Evanescent wave imaging in optical lithography," Proc. SPIE 6154, 61540 (2006).
  9. J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, "Immersion Lithography with numerical apertures above 2.0 using high index optical materials," Proc. SPIE 6520, 65204 (2007).
  10. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, "Evanescent wave interference lithography for surface nano-structuring," Physica Scripta T129, 35-37 (2007). [CrossRef]
  11. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, "Four beams evanescent waves interference lithography for patterning of two dimensional features," Opt. Express 15, 3437-3451 (2007). [CrossRef] [PubMed]
  12. C. A. Mack, "Optical Lithography Modeling," in Microlithography-Science and Technology, J. R. Sheats and B. W. Smith, eds. (Marcel and Dekker, 1998), pp. 127-147.
  13. I. Karafyllidis, "A three-dimensional photoresist etching simulator for TCAD," Modeling Simul. Mater. Sci. Eng. 7, 157-168 (1999). [CrossRef]
  14. I. Karafyllidis, P. I. Hagouel, A. Thanailakis, and A. R. Neureuther, "An Efficient Photoresist Development Simulator Based on Cellular Automata with Experimental Verification," IEEE Transactions on Semiconductor Manufacturing 13, 61-75 (2000). [CrossRef]
  15. V. N. Apletalin, Y. N. Kazantsev, and V. S. Solosin, "Frequency-selective surfaces with dumbbell shaped elements," Antennas and Propagation Society International Symposium, 2001. IEEE 4, 406-409 (2001).
  16. S. H. Kim, J. H. Choi, J. W. Baik, and Y. S. Kim, "CPW-fed log-periodic dumb-bell slot antenna array," Electron. Lett. 42, 436-438 (2006). [CrossRef]
  17. S. M. Roy, N. C. Karmakar, and I. Baibin, "Dumbbell-shaped defected ground structure," International Journal of RF and Microwave Computer-Aided Engineering 17, 210-224 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited