OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14411–14420

Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2

Yelena V. White, Xiaoxuan Li, Zbigniew Sikorski, Lloyd M. Davis, and William Hofmeister  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14411-14420 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Use of high numerical aperture focusing with negative longitudinal spherical aberration is shown to enable deep (>10 µm), high aspect ratio, nano-scale-width holes to be machined into the surface of a fused-silica (SiO2) substrate with single pulses from a 200 fs, 4 µJ Ti-Sapphire laser source. The depths of the nano-holes are characterized by use of a non-destructive acetate replication technique and are confirmed by imaging of sectioned samples with a dual focused ion beam/scanning electron microscope.

© 2008 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(220.1010) Optical design and fabrication : Aberrations (global)
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Micromachining

Original Manuscript: July 22, 2008
Revised Manuscript: August 22, 2008
Manuscript Accepted: August 24, 2008
Published: August 29, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Yelena V. White, Xiaoxuan Li, Zbigniew Sikorski, Lloyd M. Davis, and William Hofmeister, "Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2," Opt. Express 16, 14411-14420 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). [CrossRef]
  2. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997). [CrossRef]
  3. Y. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yankovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). [CrossRef]
  4. R. G. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photonics 2, 219-225 (2008). [CrossRef]
  5. D. Gomez, F. Tekniker, I. Goenaga, I. Lizuain, and M. Ozaita, "Femtosecond laser ablation for microfluidics," Opt. Eng. 44, 051105 (2005). [CrossRef]
  6. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005). [CrossRef]
  7. D. F. Farson, H. W. Choi, B. Zimmerman, J. K. Steach, J. J. Chalmers, S. V. Olesik, and L. J. Lee, "Femtosecond laser micromachining of dielectric materials for biomedical applications," J. Micromech. Microeng. 18, 035020 (2008). [CrossRef]
  8. X. Li, W. Hofmeister, G. Shen, L. Davis, and C. Daniel, "Fabrication and characterization of nanofluidics device using fused silica for single protein molecule detection," Proceedings of Materials and Processes for Medical Devices (MPMD) Conference and Exposition, September 23-25, 2007.
  9. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, "Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica," J. Opt. Soc. Am. B 23, 2317-2322 (2006). [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  11. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, 043506 (2007). [CrossRef]
  12. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459-468 (1996). [CrossRef]
  14. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998). [CrossRef]
  15. S. Nikumb, Q. Chen, C. Li, H. Reshef, H.Y. Zheng, H. Qiu, and D. Low, "Precision glass machining, drilling and profile cutting by short pulse lasers," Thin Solid Films 477, 216-221 (2005). [CrossRef]
  16. F. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. -P. Ruske, B. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Express 7, 41-49 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=oe-7-2-41 [CrossRef] [PubMed]
  17. S. Campbell, F. C. Dear, D. P. Hand, and D. T. Reit, "Single-pulse femtosecond laser machining of glass," J. Opt. A: Pure Appl. Opt. 7, 162-168 (2005). [CrossRef]
  18. V. R. Bhardwaj, P. P. Rajeev, P. B. Corkum, and D. M. Rayner, "Strong field ionization inside transparent solids," J. Phys. B: At. Mol. Opt. Phys. 39, S397-S407 (2006). [CrossRef]
  19. N. Blombergen, "Laser-induced optical breakdown in solids," IEEE J. Quantum Electron. 10, 375-386 (1974). [CrossRef]
  20. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Physics of Plasmas 9, 949-957 (2002). [CrossRef]
  21. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994). [CrossRef]
  22. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Morou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining," Appl. Phys. B 77, 25-30 (2003). [CrossRef]
  23. A. P. Joglekar, H. Liu, E. Meyhofer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: "Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004). [CrossRef] [PubMed]
  24. W. Watanabe, T. Tome, and K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, "Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses," Opt. Lett. 25, 1669-1671 (2000). [CrossRef]
  25. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, "Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006). [CrossRef]
  26. E. Toratani, M. Kamata, and M. Obara, "Self-fabrication of void array in fused silica by femtosecond laser processing," Appl. Phys. Lett. 87, 171103 (2005). [CrossRef]
  27. R. R. Gattass, L. R. Cerami, and E. Mazur, "Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates," Opt. Express 14, 5279-5284 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5279 [CrossRef] [PubMed]
  28. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997). [CrossRef]
  29. A. Couairon A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007). [CrossRef]
  30. Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, and Q. Gong, "Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica," Opt. Lett. 27, 448-450 (2002). [CrossRef]
  31. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing," Appl. Phys. A 77, 311-315 (2003).
  32. J. Pu and H. Zhang, "Intensity distribution of Gaussian beams focused by a lens with spherical aberration," Opt. Commun. 151, 331-338 (1998). [CrossRef]
  33. G. P. Karman, A. Van Duijl, and J. P. Woerdman, "Observation of a stronger focus due to spherical aberration," J. Mod. Opt. 45, 2513 (1998). [CrossRef]
  34. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A 76, 257-260 (2003). [CrossRef]
  35. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 (2005). [CrossRef]
  36. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A 84, 257-260 (2006). [CrossRef]
  37. V. Diez-Blanco, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, and J. Solis, "Deep subsurface waveguides with circular cross section produced by femtosecond laser writing," Appl. Phys. Lett. 91, 051104 (2007). [CrossRef]
  38. A. Ferrer, V. Diez-Blanco, A. Ruiz, J. Siegel, and J. Solis, "Deep subsurface optical waveguides produced by direct writing with femtosecond laser pulses in fused silica and phosphate glass," Appl. Surf. Sci. 254, 1121-1125 (2007). [CrossRef]
  39. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass," Opt. Express 15, 12395-12408 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12395 [CrossRef] [PubMed]
  40. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, "Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction," Opt. Express 16, 5481-5492 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5481 [CrossRef] [PubMed]
  41. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, "Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica," J. Opt. A: Pure Appl. Opt. 7, 655-659 (2005). [CrossRef]
  42. B. Tan, K. Venkatkrishnan, N. R. Sivakumar, G. K. Gan, "Laser drilling of thick material using femtosecond pulse with a focus of dual-frequency beam," Opt. Laser Technol. 35, 199-202 (2003). [CrossRef]
  43. S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, and H. Champux, "Femtosecond laser microstructuring of materials," Appl. Surf. Sci. 129, 875-880 (1998). [CrossRef]
  44. P. Hyde and D. Krinsley, "An improved technique for electron microscopic examination of foraminifera," Micropaleontology 10, 491-493 (1964). [CrossRef]
  45. J. Bozzola and L. D. Russell, Electron Microscopy: Principles and Techniques for Biologists (Jones & Bartlett Publishers, 1999), Chap. 3: Specimen preparation for Scanning Electron Microscopy.
  46. S. Deki, S. Iizuka, A. Horie, M. Mizuhata, and A. Kajinami, "Nanofabrication of metal oxide thin films and nano-ceramics from aqueous solution," J. Mater. Chem. 14, 3127-3132 (2004). [CrossRef]
  47. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, (Springer US, New York, New York, 2005).
  48. R. G. Brewer and C. H. Lee, "Self-trapping with picosecond light pulses," Phys. Rev. Lett. 21, 267-270 (1968). [CrossRef]
  49. R. W. Boyd, Nonlinear Optics, 2nd Edn., (Academic Press, San Diego, 2003).
  50. L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, "Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels," Proc. SPIE 7035, -9 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited