OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14731–14745

Binocular correlation of ocular aberration dynamics

S. S. Chin, K. M. Hampson, and E. A. H. Mallen  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14731-14745 (2008)
http://dx.doi.org/10.1364/OE.16.014731


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluctuations in accommodation have been shown to be correlated in the two eyes of the same subject. However, the dynamic correlation of higher-order aberrations in the frequency domain has not been studied previously. A binocular Shack-Hartmann wavefront sensor is used to measure the ocular wavefront aberrations concurrently in both eyes of six subjects at a sampling rate of 20.5 Hz. Coherence function analysis shows that the inter-ocular correlation between aberrations depends on subject, Zernike mode and frequency. For each subject, the coherence values are generally low across the resolvable frequency range (mean 0.11), indicating poor dynamic correlation between the aberrations of the two eyes. Further analysis showed that phase consistency dominates the coherence values. Monocular and binocular viewing conditions showed similar power spectral density functions.

© 2008 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: May 30, 2008
Revised Manuscript: August 12, 2008
Manuscript Accepted: August 27, 2008
Published: September 4, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
S. S. Chin, K. M. Hampson, and E. A. H. Mallen, "Binocular correlation of ocular aberration dynamics," Opt. Express 16, 14731-14745 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988). [CrossRef] [PubMed]
  2. B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992). [CrossRef] [PubMed]
  3. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye???s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  4. T. Nirmaier, G. Pudasaini, and J. Bille, "Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor," Opt. Express 11, 2704-2716 (2003). [CrossRef] [PubMed]
  5. L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958). [CrossRef] [PubMed]
  6. A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999). [CrossRef] [PubMed]
  7. F. W. Campbell, "Correlation of accommodation between the two eyes," J. Opt. Soc. Am. 50, 738 (1960).
  8. G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989). [CrossRef] [PubMed]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  10. S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000). [CrossRef]
  11. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef] [PubMed]
  12. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito and P. Artal, "Ocular wave-front aberrations statistics in a normal young population," Vision Res. 42, 1611-1617 (2002). [CrossRef]
  13. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef] [PubMed]
  14. L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003). [CrossRef]
  15. J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008). [CrossRef] [PubMed]
  16. B. S. BoxerWachler, "Effect of pupil size on visual function under monocular and binocular conditions in LASIK and non-LASIK patients," J. Cataract Refract. Surg. 29, 275-278 (2003). [CrossRef]
  17. T. Kawamorita and H. Uozato, "The effect of pupil size on binocular summation," Invest. Ophthalmol. Visual Sci. 45, 4322 (2004). [CrossRef]
  18. T. Kawamorita and H. Uozato, "Effect of pupil size and ocular wavefront aberration under binocular and monocular conditions," Invest. Ophthalmol. Visual Sci.  47, 1202 (2006).
  19. H. C. Howland, "High order wave aberration of eyes," Ophthalmic Physiol. Opt. 22, 434-439 (2002).
  20. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002). [CrossRef] [PubMed]
  21. Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003). [CrossRef]
  22. J. S. Pepose and R. A. Applegate, "Making sense out of wavefront sensing," Am. J. Ophthalmol. 139, 335-343 (2005). [PubMed]
  23. M. R. Clark and H. D. Crane, "Dynamic interaction in binocular vision," in Eye Movement and the Higher Psychological Functions, J. W. Senders, D. F. Fisher and R. A. Monty, eds., (Erlbaum, New York, 1978), pp. 77-88. [CrossRef] [PubMed]
  24. G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).
  25. F. Okuyama, T. Tokoro, and M. Fujieda, "Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions," Appl. Opt. 32, 4147-4154 (1993). [CrossRef] [PubMed]
  26. D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005). [CrossRef] [PubMed]
  27. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005). [CrossRef]
  28. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006). [CrossRef]
  29. M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998). [CrossRef]
  30. T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye???s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998). [CrossRef] [PubMed]
  31. L. N. Thibos and X. Hong, "Clinical applications of the Shack-Hartmann aberrometer," Optom. Vision Sci. 76, 817-825 (1999). [CrossRef]
  32. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008). [CrossRef]
  33. British Standards: Safety of Laser Products, 60825-1:1994. [CrossRef]
  34. J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).
  35. L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997). [CrossRef] [PubMed]
  36. S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002). [CrossRef]
  37. A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003). [PubMed]
  38. Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007). [PubMed]
  39. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002). [CrossRef] [PubMed]
  40. J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987). [PubMed]
  41. M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995). [CrossRef] [PubMed]
  42. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004). [PubMed]
  43. M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980). [CrossRef] [PubMed]
  44. A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995). [PubMed]
  45. M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004). [CrossRef] [PubMed]
  46. K. M. Hampson, E. A. H. Mallen, and C. Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006). [CrossRef] [PubMed]
  47. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, Inc., New York, 2000). [CrossRef] [PubMed]
  48. S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).
  49. L. Diaz-Dantana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003). [CrossRef]
  50. A. Bruns, "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?," J. Neurosci. Methods 137, 321-332 (2004). [CrossRef]
  51. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005). [CrossRef] [PubMed]
  52. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002). [CrossRef]
  53. R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004). [CrossRef]
  54. S. Gruppetta, F. Lacombe, and P. Puget, "Study of the dynamic aberrations of the human tear film," Opt. Express 13, 7631-7636 (2005) [CrossRef] [PubMed]
  55. S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006). [CrossRef] [PubMed]
  56. M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006). [CrossRef]
  57. F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959). [CrossRef] [PubMed]
  58. L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997). [PubMed]
  59. N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited