OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 15006–15012

Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 15006-15012 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate electro-optical tuning of single quantum dots (QDs) embedded in high-quality (high-Q) micropillar cavities by exploiting the quantum confined Stark effect (QCSE). Combining electrically contacted high-Q micropillars and large In0.3Ga0.7As QDs with high oscillator strength facilitates the realization of strong coupling. In our experiments a single QD exciton was electrically tuned on resonance with a cavity mode of a micropillar with 1.9µm diameter and a quality-factor (Q-factor) of 14,000 enabling the observation of strong coupling with a vacuum Rabi-Splitting of 63µeV.

© 2008 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: July 8, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 11, 2008
Published: September 9, 2008

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Michler, A. Kiraz, Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  2. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999). [CrossRef]
  3. J. P. Reithmaier, G. Se¸k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature (London) 432, 197-200 (2004). [CrossRef]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature (London) 432, 200-203 (2004). [CrossRef]
  5. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401-1-4 (2005). [CrossRef]
  6. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  7. A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110-1-3 (2007). [CrossRef]
  8. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108-1-3 (2005). [CrossRef]
  9. A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, "In situ laser microprocessing of single self-assembled quantum dots and optical microcavities," Appl. Phys. Lett. 90, 73120-1-3 (2007). [CrossRef]
  10. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105-1-3 (2005). [CrossRef]
  11. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett.  92, 043123-1-3 (2008). [CrossRef]
  12. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829-9837 (2008). [CrossRef] [PubMed]
  13. C. Bockler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, "Electrically driven high-Q quantum dot-micropillar cavities," Appl. Phys. Lett. 92, 091107-1-3 (2008). [CrossRef]
  14. F. Hofbauer, S. Grimminger, J. Angele, G. Bohm, R. Meyer, M. C. Amann, and J. J. Finley, "Electrically probing photonic bandgap phenomena in contacted defect nanocavities," Appl. Phys. Lett. 91, 201111-1-3 (2007). [CrossRef]
  15. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O???Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, "Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots," Phys. Rev. Lett. 84, 733-736 (2000). [CrossRef] [PubMed]
  16. I. D???Amico and F. Rossi,"Field-induced Coulomb coupling in semiconductor macroatoms: Application to singleelectron quantum devices," Appl. Phys. Lett. 79, 1676-1678 (2001). [CrossRef]
  17. J. J. Finley, M. Sabathil, P. Vogl, G. Abstreiter, R. Oulton, A. I. Tartakovskii, D. J. Mowbray, M. S. Skolnick, S. L. Liew, A. G. Cullis, M. Hopkinson, "Quantum-confined Stark shifts of charged exciton complexes in quantum dots," Phys. Rev. B 70, 201308-1-4 (2004). [CrossRef]
  18. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett.  90, 251109-1-3 (2007). [CrossRef]
  19. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308-1-4 (2002).
  20. L. C. Andreani, G. Panzarini, and J. M. Gerard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 66, 13276-13279 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited