OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1029–1050

Complex wavelets applied to diffuse optical spectroscopy for brain activity detection

J.-M. Lina, M. Dehaes, C. Matteau-Pelletier, and F. Lesage  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 1029-1050 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (6720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The analysis of diffuse optical imaging (DOI) data has seen significant developments over the last few years. When compared to fMRI, signals originating from optical imaging are tainted by more physiology and the separation of activation from this background can be difficult in some cases. In this work, we show that the use of time-frequency techniques based on wavelets distinguish different physiological sources from the evoked response to a given stimulus. In particular, we show that analytical complex wavelets identify synchronies in the signal at different scales. These synchronies are then used to extract activation information from the DOI data in order to estimate the evoked hemodynamic response or to define a new type of contrast between two conditions. This work presents both simulations and applications with real data (visual stimulation and motor tasks experiments).

© 2008 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Imaging Systems

Original Manuscript: September 6, 2007
Revised Manuscript: November 28, 2007
Manuscript Accepted: November 28, 2007
Published: January 11, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

J.-M Lina, M. Dehaes, C. Matteau-Pelletier, and F. Lesage, "Complex wavelets applied to diffuse optical spectroscopy for brain activity detection," Opt. Express 16, 1029-1050 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Jobsis, "Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  2. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995). [CrossRef]
  3. G. Gratton, M. Fabiani, T. Elbert and B. Rockstroh, "Seeing right through you: applications of optical imaging to the study of the human brain," Psychophysiology 40, 487-491 (2003). [CrossRef] [PubMed]
  4. A. A. Baird, J. Kagan, T. Gaudette, K. A. Walz, N. Hershlag and D. A. Boas, "Frontal lobe activation during object permanence: data from near-infrared spectroscopy," NeuroImage. 16, 1120-1126 (2002). [CrossRef] [PubMed]
  5. H. Kato, M. Izumiyama, H. Koizumi, A. Takahashi and Y. Itoyama, "Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI," Stroke 33, 2032-2036 (2002). [CrossRef] [PubMed]
  6. J. Cohen-Adad, S. Chapuisat, J. Doyon, J.M. Lina, H. Benali and F. Lesage, "Application of the general linear model to response estimation in optical imaging," Medical Imaging Analysis 11, 616-629 (2007). [CrossRef]
  7. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge and D. A. Boas, "Dynamic physiological modeling for functional diffuse optical tomography," NeuroImage 30, 88-101 (2006). [CrossRef]
  8. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006). [CrossRef] [PubMed]
  9. V. Kolehmainen, S. Prince, S. R. Arridge and J. P. Kaipio, "State-estimation approach to the nonstationary optical tomography problem." J. Opt. Soc. Am. A 20, 876-889 (2003). [CrossRef]
  10. A. Li, G. Boverman, Y. H. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman and D. A. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-1956 (2005). [CrossRef] [PubMed]
  11. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas and S. R. Arridge, "Time-series estimation of biological factors in optical diffusion tomography," Phys. Med. Biol. 48, 1491-504 (2003). [CrossRef] [PubMed]
  12. Y. Zhang, D. H. Brooks and D. A. Boas, "A haemodynamic response function model in spatio-temporal diffuse optical tomography," Phys. Med. Biol. 50, 4625-44, (2005). [CrossRef] [PubMed]
  13. Y. Meyer, Wavelets: Algorithms and Applications, (SIAM, Philadelphia, 1993).
  14. Recordings done in D. A. Boas laboratory, MGH (http://www.nmr.mgh.harvard.edu/PMI/).
  15. D. A. Boas, A. M. Dale and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution and accuracy," NeuroImage 23, S275-S288 (2004). [CrossRef] [PubMed]
  16. A. T. Smith, A. L. Williams and K. D. Singh, "Negative BOLD in the visual cortex: evidence against blood stealing," Human Brain Mapping 21, 213-220, (2004). [CrossRef] [PubMed]
  17. A. Shmuel, E. Yacoub, J. Pfeuffer, P.F. Van de Moortele, G. Adriany, X. Hu and K. Ugurbil, "Sustained negative BOLD, blood flow and oxygen consumption response and Its coupling to the positive response in the human brain," Neuron 36, 1195-1210, (2002). [CrossRef] [PubMed]
  18. F. G. Meyer, "Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series," IEEE Trans. Med. Imaging 22, 315-322 (2003). [CrossRef] [PubMed]
  19. S. Mallat, A Wavelet Tour of Signal Processing, (Academic Press, 1998).
  20. B. Torresani, Analyse continue par ondelettes, (CNRS Editions, 1995).
  21. I. Daubechies, Ten lectures on wavelets, (SIAM Philadelphia, 1992). [CrossRef]
  22. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl and A. Villringer, "Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults," NeuroImage 12, 623-639 (2000). [CrossRef] [PubMed]
  23. C. Julien, "The enigma of Mayer waves: facts and model," Cardiovasc. Res. 70, 12-21 (2006). [CrossRef]
  24. S. Bayard, N. Gosselin, M. Robert, M. Lassonde, "Inter- and Intra-hemispheric Processing of visual event related potentials in the absence of the corpus callosum," J. Cognitive Neuroscience 16, 1-14 (2004). [CrossRef]
  25. M. Dehaes, L. Gagnon, M. Desjardins, R. M. Comeau and F. Lesage, "Positive responses in diffuse optical imaging and their relation to the negative BOLD effect," in preparation, (2007).
  26. G. W. Wornell, A karhunen-loeve-like expansion for 1/f process via wavelets. IEEE Trans. Inf. Theory 36, 859- 861 (1990). [CrossRef]
  27. G. W. Wornell, Signal Processing with Fractals: A wavelet-based approach, (Prentice Hall, 1996).
  28. P. Flandrin, "Wavelet analysis and synthesis of fractional brownian motion," IEEE Trans. Inf. Theory 38, 910-917 (1992) [CrossRef]
  29. A. H. Tewfik and M. Kim, "Correlation structure of the discrete wavelet coefficients of fractional Brownian motion," IEEE Trans. Inf. Theory 38, 904-909 (1992). [CrossRef]
  30. M. J. Fadili and E. T. Bullmore, "Wavelet-Generalized Least Squares: A New BLU Estimator of Linear Regression Models with 1/f Errors," Neuroimage 15, 217-232 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited