OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 1280–1299

Nonlinear-optical phase modification in dispersion-engineered Si photonic wires

J. I. Dadap, N. C. Panoiu, Xiaogang Chen, I-Wei Hsieh, Xiaoping Liu, Cheng-Yun Chou, E. Dulkeith, S. J. McNab, Fengnian Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr.  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 1280-1299 (2008)
http://dx.doi.org/10.1364/OE.16.001280


View Full Text Article

Enhanced HTML    Acrobat PDF (617 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The strong dispersion and large third-order nonlinearity in Si photonic wires are intimately linked in the optical physics needed for the optical modification of phase. By carefully choosing the waveguide dimensions, both linear and nonlinear optical properties of Si wires can be engineered. In this paper we provide a review of the modification of phase using nonlinear-optical effects such as self-phase and cross-phase modulation in dispersion-engineered Si wires. The low threshold powers for phase-changing effects in Si-wires make them potential candidates for functional nonlinear optical devices of just a few millimeters in length.

© 2008 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics for Functional Devices and Applications

History
Original Manuscript: September 21, 2007
Revised Manuscript: January 2, 2008
Manuscript Accepted: January 3, 2008
Published: January 16, 2008

Virtual Issues
Focus Serial: Frontiers of Nonlinear Optics (2007) Optics Express

Citation
J. I. Dadap, N. C. Panoiu, Xiaogang Chen, I-Wei Hsieh, Xiaoping Liu, Cheng-Yun Chou, E. Dulkeith, S. J. McNab, Fengnian Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280-1299 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-1280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, J. P. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985). [CrossRef]
  2. R. A. Soref, B. R. Bennett, “Electro-optical effects in Silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987). [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef] [PubMed]
  4. Q. Xu, B. Shmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]
  5. V. R. Almeida, C. A. Barrios, R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  6. C. A. Barrios, V. R. de Almeida, M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator,” IEEE J. Lightwave Technol. 21, 1089–1098 (2003). [CrossRef]
  7. G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptic micromodulator with 700-kHz - 3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995). [CrossRef]
  8. R. L. Espinola, M.-C. Tsai, J. T. Yardley, R. M. Osgood Jr., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003). [CrossRef]
  9. M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-µs switching time in silicon-on-insulator Mach-Zender thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004). [CrossRef]
  10. M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004). [CrossRef]
  11. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef] [PubMed]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005). [CrossRef]
  13. R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE, 81, 1687–1706 (1993). [CrossRef]
  14. B. P. Pal, “Guided-wave optics on silicon: physics, technology, and status,” Progress in Optics 32, 3–59 (1994).
  15. G. T. Reed, A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004). [CrossRef]
  16. L. Pavesi, D. J. Lockwood, Silicon Photonics (Springer-Verlag, New York, 2004).
  17. M. Paniccia, M. Morse, M. Salib, “Integrated Photonics,” Top. Appl. Phys. 94, 51–88 (2004). [CrossRef]
  18. L. C. Kimerling, L. Dal Negro, S. Saini, Y. Yi, D. Ahn, S. Akiyama, D. Cannon, J. Liu, J. G. Sandland, D. Sparacin, J. Michel, K. Wada, M. R. Watts, “Monolithic Silicon Microphotonics,” Top. Appl. Phys. 94, 89–120 (2004). [CrossRef]
  19. B. Jalali, R. Claps, D. Dimitropoulos, V. Raghunathan, “Light generation, amplification, and wavelength conversion via stimulated Raman scattering in silicon microstructures,” Top. Appl. Phys. 94, 199–238 (2004). [CrossRef]
  20. R. J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, M. Asghari, “Silicon Based Waveguides,” Top. Appl. Phys. 94, 269–294 (2004). [CrossRef]
  21. S. Janz, “Silicon-Based Waveguide Technology for Wavelength Division Multiplexing,” Top. Appl. Phys. 94, 323–360 (2004). [CrossRef]
  22. A. Irace, G. Breglio, M. Iodice, A. Cutolo, “Light Modulation with Silicon Devices,” Top. Appl. Phys. 94, 361–391 (2004). [CrossRef]
  23. M. Lipson, “Guiding, modulating, and emitting light on silicon - challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005). [CrossRef]
  24. L. Pavesi, G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
  25. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  26. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  27. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45, 6589–6602 (2006). [CrossRef]
  28. R Dekker, N Usechak, M Först, A Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40, R249–R271 (2007). [CrossRef]
  29. R. Claps, D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313 (2002). [PubMed]
  30. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr., S. J. McNab, Y. A. Vlasov, “Spontaneous Raman scattering in ultrasmall silicon waveguides,” Opt. Lett. 29, 2755–2757 (2004). [CrossRef] [PubMed]
  31. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003). [CrossRef] [PubMed]
  32. R. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004). [CrossRef] [PubMed]
  33. T. K. Liang, H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004). [CrossRef]
  34. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004). [CrossRef] [PubMed]
  35. Ö. Boyraz, B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Elect.Express 1, 429–434 (2004). [CrossRef]
  36. Q. Xu, V. R. Almeida, M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-oninsulator waveguide,” Opt. Lett. 30, 35–37 (2005). [CrossRef] [PubMed]
  37. R. Claps, V. Raghunathan, Ö. Boyraz, P. Koonath, D. Dimitropoulos, B. Jalali, “Raman amplification and lasing in SiGe waveguides,” Opt. Express 13, 2459–2466 (2005). [CrossRef] [PubMed]
  38. S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Materials 4, 887–891 (2005). [CrossRef] [PubMed]
  39. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006). [CrossRef] [PubMed]
  40. Ö. Boyraz, B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef] [PubMed]
  41. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005). [CrossRef] [PubMed]
  42. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725 (2005). [CrossRef] [PubMed]
  43. Ö. Boyraz, B. Jalali, “Demonstration of a directly modulated silicon Raman laser,” Opt. Express 13, 796–800 (2005). [CrossRef] [PubMed]
  44. H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006). [CrossRef] [PubMed]
  45. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultra-low threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004). [CrossRef]
  46. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef] [PubMed]
  47. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003). [CrossRef] [PubMed]
  48. V. Raghunathan, R. Claps, D. Dimitropoulos, B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005). [CrossRef]
  49. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005). [CrossRef] [PubMed]
  50. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. -i. Takahashi, S. -i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef] [PubMed]
  51. Q. Xu, V. R. Almeida, M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005). [CrossRef] [PubMed]
  52. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006). [CrossRef] [PubMed]
  53. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broadband optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  54. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18, 1046–1048 (2006). [CrossRef]
  55. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef] [PubMed]
  56. H.K. Tsang, C.S. Wong, T.K. Lang, I.E. Day, S.W. Roberts, A. Harpin, J. Drake, M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 3, 416–418 (2002). [CrossRef]
  57. G. W. Rieger, K. S. Virk, J. F. Young, “Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004). [CrossRef]
  58. Ö. Boyraz, T. Indukuri, B. Jalali, “Self-phase modulation-induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004). [CrossRef] [PubMed]
  59. A. Cowan, G. Rieger, J. Young, “Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004). [CrossRef] [PubMed]
  60. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44, 6541–6545 (2005). [CrossRef]
  61. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood, Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef] [PubMed]
  62. I. -W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006). [CrossRef] [PubMed]
  63. Ö. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef] [PubMed]
  64. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13, 7298–7303 (2005). [CrossRef] [PubMed]
  65. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 µm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006). [CrossRef] [PubMed]
  66. I. -W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146 (2007). [CrossRef] [PubMed]
  67. C. Manolatou, M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006). [CrossRef]
  68. T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, H.K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Optics Commun. 265, 171–174 (2006). [CrossRef]
  69. I. -W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. -Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007). [CrossRef] [PubMed]
  70. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2002).
  71. S. McNab, N. Moll, Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef] [PubMed]
  72. Y. Vlasov, S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef] [PubMed]
  73. F. Xia, L. Sekaric, Y. A. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71 (2007). [CrossRef]
  74. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers,” Nature 424, 511 (2003). [CrossRef] [PubMed]
  75. M. Foster, K. Moll, A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004). [CrossRef] [PubMed]
  76. S. Ramachandran, “Dispersion-tailored few-mode fibers: A versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426 (2005). [CrossRef]
  77. X. Chen, N. C. Panoiu, R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006). [CrossRef]
  78. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef] [PubMed]
  79. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006). [CrossRef] [PubMed]
  80. L. Yin, Q. Lin, G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295–1297 (2006). [CrossRef] [PubMed]
  81. X. Chen, N. Panoiu, I. Hsieh, J. I. Dadap, R. M. Osgood, Jr., “Third-order dispersion and ultrafast pulse propagation in silicon wire waveguides,” IEEE Photon. Technol. Lett. 18, 2617–2619 (2006). [CrossRef]
  82. T. K. Liang, H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004). [CrossRef]
  83. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004). [CrossRef] [PubMed]
  84. M. Dinu, F. Quochi, H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954 (2003). [CrossRef]
  85. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003). [CrossRef]
  86. A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  87. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 21111 (2007). [CrossRef]
  88. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  89. C. Koos, L. Jacome, C. Poulton, J. Leuthold, W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]
  90. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, P. M. Fauchet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007). [CrossRef] [PubMed]
  91. L. Yin, Q. Lin, G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef] [PubMed]
  92. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion,” Opt. Lett.18, 54- (1993).
  93. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986). [CrossRef] [PubMed]
  94. N. Akhmediev, M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]
  95. P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating ultrafast optical pulses,” Appl. Phys. Lett. 52, 1939–1941 (1988). [CrossRef]
  96. N. C. Panoiu, X. Chen, R. M. Osgood, Jr., “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006). [CrossRef] [PubMed]
  97. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987). [CrossRef] [PubMed]
  98. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef] [PubMed]
  99. W. Huang, J. Hong, “A coupled-mode analysis of modulation instability in optical fibers,” J. Lightwave Technol. 10, 156–162 (1992). [CrossRef]
  100. M. Yu, C. J. Mckinstrie, G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E 48, 2178 (1993). [CrossRef]
  101. D. Schadt, B. Jaskorzynska, “Generation of short pulses from CW light by influence of crossphase modulation (CPM) in optical fibres,” Electron. Lett. 23, 1090–1091 (1987). [CrossRef]
  102. A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulational instability in optical fibers,” Opt. Lett. 13, 901–903 (1988). [CrossRef] [PubMed]
  103. E. -K. Tien, N. S. Yuksek, F. Qian, Ö. Boyraz, “Pulse compression and modelocking by using TPA in silicon waveguides,” Opt. Express 15, 6500–6506 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited