OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15375–15381

Improvement of transmission properties through two-bend resonance by holographic design for a two-dimemsional photonic crystal waveguide

G. Y. Dong, X. L. Yang, L. Z. Cai, X. X. Shen, and Y. R. Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15375-15381 (2008)
http://dx.doi.org/10.1364/OE.16.015375


View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the transmission properties of a photonic crystal waveguide (PCW) formed by holographic lithography for the first time with a two-dimensional (2D) triangular holographic photonic crystal (PhC) including a line defect with two 60° bends. Calculations have shown that for this PCW high transmission (>90%) through sharp corners can be obtained in a wide frequency range from 0.298 to 0.310 (ωa/2πc) with the relative band gap of 4% when the dielectric contrast is 7.6:1. As far as we know, this result should be the widest frequency range with high transmission (>90%) in the waveguide of similar 2D triangular PhCs ever reported. We have also found that the specific holographic designs of PhC have strong influence on the resonance between the two waveguide bends, and thus this fact can be used as an effective means to improve the transmission property of 2D holographic PCW. In addition to the simplicity and low cost of holographic fabrication of PhCs, these features may reveal the possibly better guiding ability of holographic PCW than the conventional waveguide and the promising potential of the former in the application of photonic integrated circuits.

© 2008 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: July 18, 2008
Revised Manuscript: August 23, 2008
Manuscript Accepted: August 25, 2008
Published: September 15, 2008

Citation
G. Y. Dong, X. L. Yang, L. Z. Cai, X. X. Shen, and Y. R. Wang, "Improvement of transmission properties through two-bend resonance by holographic design for a two-dimemsional photonic crystal waveguide," Opt. Express 16, 15375-15381 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15375


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton University Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  4. A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  6. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  7. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  8. J. García, P. Sanchis, and J. Martí, "Detailed analysis of the influence of structure length on pulse propagation through finite-size photonic crystal waveguides," Opt. Express 14, 6879-6893 (2006). [CrossRef] [PubMed]
  9. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  10. A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002). [CrossRef]
  11. J. Smajic, C. Hafner, and D. Erni, "Design and optimization of an achromatic photonic crystal bend," Opt. Express 11, 1378-1384 (2003). [CrossRef] [PubMed]
  12. X. D. Cui, C. Hafner, R. Vahldieck, and F. Robin, "Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation," Opt. Express 14, 4351-4356 (2006). [CrossRef]
  13. J. García, P. Sanchis, and J. Martí, "Detailed analysis of the influence of structure length on pulse propagation through finite-size photonic crystal waveguides," Opt. Express 14, 6879-6893 (2006). [CrossRef] [PubMed]
  14. A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002). [CrossRef]
  15. A. Talneau, P. Lalanne, M. Agio, and C.M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002). [CrossRef]
  16. X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006). [CrossRef]
  17. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  18. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  19. X. L. Yang, L. Z. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003). [CrossRef] [PubMed]
  20. F. Ramos-Mendieta and P. Halevi, "Electromagnetic surface modes of a dielectric superlattice: the supercell method," J. Opt. Soc. Am. B 14, 370-381 (1997). [CrossRef]
  21. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990). [CrossRef] [PubMed]
  22. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000). [CrossRef]
  23. T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3304 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited