OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15402–15414

Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals

Debashis Chanda, Ladan E. Abolghasemi, Moez Haque, Mi Li Ng, and Peter R. Herman  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15402-15414 (2008)
http://dx.doi.org/10.1364/OE.16.015402


View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Γ-Z stopband under liquid emersion.

© 2008 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.5080) Diffraction and gratings : Phase shift
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.5082) Diffraction and gratings : Phase space in wave options
(050.5298) Diffraction and gratings : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: August 4, 2008
Revised Manuscript: August 29, 2008
Manuscript Accepted: August 31, 2008
Published: September 15, 2008

Citation
Debashis Chanda, Ladan E. Abolghasemi, Moez Haque, Mi Li Ng, and Peter R. Herman, "Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals," Opt. Express 16, 15402-15414 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  3. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004). [CrossRef] [PubMed]
  4. V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Express 29, 2061-2063 (2004).
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  7. S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci.USA 101, 12428-12433 (2004). [CrossRef] [PubMed]
  8. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005). [CrossRef]
  9. D. Chanda, L. Abolghasemi, and P. R. Herman, "One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates," Opt. Express 14, 8568-8577 (2006). [CrossRef] [PubMed]
  10. D. Chanda and P. R. Herman, "Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates," Appl. Phys. Lett. 91, 061122, (2007). [CrossRef]
  11. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
  12. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
  13. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep.-Rev. Sec. Phys. Lett. 444, 101-202 (2007).
  14. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band-gaps in 3-dimensions - new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  15. D. Chanda, L. Abolghasemi, and P. R. Herman, "Diffractive Optical Elements based Fabrication of Photonic Crystals," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMV7.
  16. D. Chanda, L. E. Abolghasemi, and P. R. Herman, "Single laser exposure fabrication of diamond-like 3-dimensional photonic crystal microstructure using circularly polarized light," Appl. Phys. A 93, 33-37 (2008). [CrossRef]
  17. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  18. J. H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003). [CrossRef]
  19. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, "Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal," Opt. Express 16, 9165-9172 (2008). [CrossRef] [PubMed]
  20. T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006). [CrossRef]
  21. J. T. Winthrop and Worthing.Cr,  "Theory of Fresnel images. I. plane periodis objects in monochromatic light," J. Opt. Soc. Am. 55, 373-381 (1965). [CrossRef]
  22. E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993). [CrossRef]
  23. P. Szwaykowski and V. Arrizon, "Talbot array illuminator with multilevel phase gratings," Appl. Opt. 32, 1109-1114 (1993). [CrossRef] [PubMed]
  24. V. Arrizon and J. Ojedacastaneda, "Multilevel phase gratings for array illuminators," Appl. Opt. 33, 5925-5931 (1994). [CrossRef] [PubMed]
  25. L. E. Abolghasemi, D. Chanda, and P. R. Herman, "Modeling resist response in holographic formation of three-dimension photonic crystal templates," Proc. SPIE 6343, 63432Y.1-63432Y.8 (2006).
  26. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007). [CrossRef]
  27. D. Chanda, L. Abolghasemi, and P. R. Herman, "Numerical Band Calculation of Holographically Formed Periodic Structures with Irregular Motif," Proc. SPIE 6128,311-316 (2006).
  28. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photon. 2, 52-56 (2008). [CrossRef]
  29. C. H. Sun, and P. Jiang, "Acclaimed defects," Nat. Photon. 2, 9-11 (2008). [CrossRef]
  30. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited