OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15903–15914

Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides

Christoph Hunziker, Seong-Ji Kwon, Harry Figi, Mojca Jazbinsek, and Peter Günter  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15903-15914 (2008)
http://dx.doi.org/10.1364/OE.16.015903


View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel and promising technique for the fabrication of electro-optically active single crystalline organic waveguides from 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile (OH1) is presented. OH1 is an interesting material for photonic applications due to the large electro-optic coefficients (r333=109±4 pm/V at 632.8 nm) combined with a relatively high crystal symmetry (orthorhombic with point group mm2). Due to the very favorable growth characteristics, large-area (> 150 mm2) single crystalline thin films with very good optical quality and thickness between 0.05-10 µm have been grown on amorphous glass substrates. We have developed and optimized optical lithography and reactive ion etching processes for the fabrication of wire optical waveguides with dimensions of w×h=3.4×3.5 µm2 and above. The technique is capable of producing low loss integrated optical waveguides having propagation losses of 2 dB/cm with a high refractive index contrast between core-cladding and core-substrate of Δn=1.23 and 0.72, respectively at 980 nm. Electro-optic phase modulation in these waveguides has been demonstrated at 632.8 nm and 852 nm. Calculations show that with an optimized electrode configuration the half-wave voltage×length product Vπ·L can be reduced from 8.4 Vcm, as obtained in our device, to 0.3 Vcm in the optimized case. This allows for the fabrication of sub-1 V half-wave voltage, organic electro-optic modulators with highly stable chromophore orientation.

© 2008 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: July 25, 2008
Revised Manuscript: September 12, 2008
Manuscript Accepted: September 15, 2008
Published: September 22, 2008

Citation
Christoph Hunziker, Seong-Ji Kwon, Harry Figi, Mojca Jazbinsek, and Peter Günter, "Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides," Opt. Express 16, 15903-15914 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Günter, ed., Nonlinear Optical Effects and Materials, vol. 72 of Optical Science (Springer, Berlin, Heidelberg, New York, 2000).
  2. M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2007).
  3. H. S. Nalwa, ed., Organic Electronics and Photonics, vol. 2 (American Scientific Publishers, 2008).
  4. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000). [CrossRef]
  5. B. M. A. Rahman, S. Haxha, V. Haxha, and K. T. V. Grattan, "Design optimization of high-speed optical modulators," Act. Pass. Opt. Comp. Comm. Vi 6389, X3890-X3890 (2006).
  6. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007). [CrossRef]
  7. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. D. Luo, A. K. Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonator-based electrooptic polymer traveling-wave modulator," J. Lightwave Techn. 24, 3514-3519 (2006). [CrossRef]
  8. D. Rezzonico, M. Jazbinsek, A. Guarino, O. P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008). [CrossRef] [PubMed]
  9. D. Rezzonico, S. J. Kwon, H. Figi, O. P. Kwon, M. Jazbinsek, and P. Günter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008). [CrossRef] [PubMed]
  10. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, "Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation," Adv. Funct. Mater. 17, 2018-2023 (2007). [CrossRef]
  11. J. Ogawa, S. Okada, Z. Glavcheva, and H. Nakanishi, "Preparation, properties and structures of 1-methyl-4-2-[4- (dimethylamino)phenyl]ethenylpyridinium crystals with various counter anions," J. Cryst. Growth 310, 836-842 (2008). [CrossRef]
  12. S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," C. R. Phys. 3, 449-462 (2002). [CrossRef]
  13. M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003). [CrossRef]
  14. S. R. Marder, J. W. Perry, and W. P. Schaefer, "Synthesis of Organic Salts with Large 2nd-Order Optical Nonlinearities," Science 245, 626-628 (1989). [CrossRef]
  15. U. Meier, M. Bosch, C. Bosshard, F. Pan, and P. Günter, "Parametric interactions in the organic salt 4-N,Ndimethylamino-4'-N'-methyl-stilbazolium tosylate at telecommunication wavelengths," J. Appl. Phys. 83, 3486-3489 (1998). [CrossRef]
  16. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996). [CrossRef]
  17. P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surf. Sci. 220, 88-95 (2003). [CrossRef]
  18. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N,N-dimethylamino-4'-N'-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003). [CrossRef]
  19. T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002). [CrossRef]
  20. W. Geis, R. Sinta,W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004). [CrossRef]
  21. L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Dobeli, "Ion implanted optical waveguides in nonlinear optical organic crystal," Opt. Express 15, 629-638 (2007). [CrossRef] [PubMed]
  22. L. Mutter, M. Koechlin, M. Jazbinsek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007). [CrossRef] [PubMed]
  23. B. Ruiz, M. Jazbinsek, and P. Günter, "Crystal growth of DAST," Cryst. Growth Des. (to be published) (2008). [CrossRef]
  24. Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, "Molecular engineering of stilbazolium derivatives for second-order nonlinear optics," Chem. Mater. 19, 3512-3518 (2007). [CrossRef]
  25. O. P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic nonlinear optical crystals based on configurationally locked polyene for melt growth," Chem. Mater. 18, 4049-4054 (2006). [CrossRef]
  26. B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, "Quadratic optical nonlinearities of N-methyl and N-aryl pyridinium salts," Adv. Funct. Mater. 13, 347-357 (2003). [CrossRef]
  27. O.-P. Kwon, S. J. Kwon, M. Jazbinsek, F. D. J. Brunner, J. I. Seo, C. Hunziker, A. Schneider, H. Yun, Y.-S. Lee, and P. Günter, "Organic Phenolic Configurationally Locked Polyene Single Crystals for Electro-Optic and Terahertz Wave Applications," Adv. Funct. Mater. (to be published) (2008).
  28. C. Hunziker, S.-J. Kwon, F. Juvalta, O.-P. Kwon, M. Jazbinsek, and P. Günter, "Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile: Linear and nonlinear optical properties," J. Opt. Soc. Am. B 25 (2008). [CrossRef]
  29. T. Kolev, Z. Glavcheva, D. Yancheva, M. Schurmann, D.-C. Kleb, H. Preut, and P. Bleckmann, "2-3-[2-(4-Hydroxyphenyl)vinyl]-5,5-dimethylcyclohex-2-en-1-ylidenemalononitrile," Acta Crystallogr., Sect. E: Struct. Rep. Online 57, o561-o562 (2001). [CrossRef]
  30. T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, "The effect of soft bake temperature on the polymerization of SU-8 photoresist," J. Micromech. Microeng. 16, 1819-1824 (2006). [CrossRef]
  31. F. Agullo-Lopez, J. M. Cabrera, and F. Aullo-Rueda, Electrooptics: Penomena, Materials and Applications (Academic Press Inc., San Diego, 1994).
  32. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials, vol. 1 of Advances in Nonlinear Optics (Gordon and Breach, Amsterdam, 1995).
  33. G. Joshi and S. M. Pawde, "Effect of molecular weight on dielectric properties of polyvinyl alcohol films," J. Appl. Polym. Sci. 102, 1014-1016 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited