OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16766–16773

A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 µm

T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, and C. J. K. Richardson  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16766-16773 (2008)
http://dx.doi.org/10.1364/OE.16.016766


View Full Text Article

Enhanced HTML    Acrobat PDF (7344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Placing a quantum well modulator in an asymmetric Fabry-Perot cavity enables significantly higher contrast ratios than are possible in a conventional surface-normal quantum well modulator. However, fixed-cavity asymmetric Fabry-Perot quantum well modulators require extremely precise and uniform crystal growth and are sensitive to small fluctuations in temperature or angle of incidence. Here, we experimentally demonstrate an InP-based microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator that operates in the optical C-band. By actuating a suspended InGaAlAs reflector, the cavity mode can be perfectly matched to the appropriate quantum well absorption wavelength. The devices exhibit contrast ratios over 30 (15 dB) at 8 volts quantum well bias and modulation speeds of 1 MHz.

© 2008 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3990) Optical devices : Micro-optical devices
(230.4205) Optical devices : Multiple quantum well (MQW) modulators
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: June 3, 2008
Revised Manuscript: September 2, 2008
Manuscript Accepted: September 18, 2008
Published: October 7, 2008

Citation
T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, and C. J. K. Richardson, "A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 µm," Opt. Express 16, 16766-16773 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16766


Sort:  Journal  |  Reset  

References

  1. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, "Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures," IEEE Photon. Technol. Lett. 18, 214-216 (2006). [CrossRef]
  2. R. N. Pathak, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, "InGaAs-InP (MQW)-N Surface-Normal Electroabsorption Modulators Exhibiting Better Than 8:1 Contrast Ratio for 1.55 μm Applications Grown by Gas-Source MBE," IEEE Photon. Technol. Lett. 6, 1439-1441 (1994). [CrossRef]
  3. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, "A Surface-Normal Coupled-Quantum-Well Modulator at 1.55 Microns," IEEE Photon. Technol. Lett. 16, 2036-2038 (2004). [CrossRef]
  4. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, J. H. Ray Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, "45-Mbit/s cat’s-eye modulating retroreflectors," Opt. Eng. 46, 104001 (2007). [CrossRef]
  5. H. Liu, C. C. Lin, and J. S. Harris, "High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects," Opt. Eng. 40, 1186-1191 (2001). [CrossRef]
  6. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, "Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells," Opt. Lett. 22, 718-720 (1997). [CrossRef] [PubMed]
  7. P. G. Goetz, R. Mahon, T. H. Stievater, W. S. Rabinovich, and S. C. Binari, "High-Speed Large Area Surface-Normal Multiple Quantum Well Modulators," in Free-Space Laser Comm. & Active Laser Illumination III, D. G. Voelz and J. C. Ricklin, eds., pp. 346-354 (2004).
  8. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, and C. Button, "Low-voltage multiple quantum well reflection modulator with on-off ratio greater than 100:1," Electron. Lett. 25, 984-985 (1989). [CrossRef]
  9. S. J. B. Yoo, M. A. Koza, R. Bhat, and C. Caneau, "1.5 μm asymmetric Fabry-Perot modulators with two distinct modulation and chirp characteristics," Appl. Phys. Lett. 72, 3246-3248 (1998). [CrossRef]
  10. R. I. Killey, C. P. Liu, M. Whitehead, P. Stavrinou, J. B. Song, J. S. Chadha, D. Wake, C. C. Button, G. Parry, and A. J. Seeds, "Multiple-Quantum-Well Asymmetric Fabry-Perot Modulators for Microwave Photonic Applications," IEEE Trans. Microwave Theory Tech. 49, 1888-1892 (2001). [CrossRef]
  11. G. L. Christenson, A. T. T. D. Tran, Z. H. Zhu, Y. H. Lo, M. Hong, J. P. Mannaerts, and R. Bhat, "Long-Wavelength Resonant Vertical-Cavity LED/Photodetector with a 75-nm Tuning Range," IEEE Photon. Technol. Lett. 9, 725-727 (1997). [CrossRef]
  12. Q. Chen, G. D. Cole, E. S. Bjorlin, T. Kimura, S. Wu, C. S. Wang, N. C. MacDonald, and J. Bowers, "First demonstration of a MEMS tunable vertical-cavity SOA," IEEE Photon. Technol. Lett. 16, 1438-1440 (2004). [CrossRef]
  13. D. Vakhshoori, P. Tayebati, C.-C. Lu, M. Azimi, P. Wang, J.-H. Zhou, and E. Canoglu, "2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range," Electron. Lett. 35, 900-901 (1999). [CrossRef]
  14. W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, "Demonstration of a microelectromechanical tunable asymmetric Fabry-Perot quantum well modulator," Appl. Phys. Lett. 83, 1923-1925 (2003). [CrossRef]
  15. M. H. M. Reddy, T. Asano, R. Koda, D. A. Buell, and L. A. Coldren, "Molecular beam epitaxy-grown Al-GaInAs/InP distributed Bragg reflectors for 1.55 μm VCSELs," Electron. Lett. 38, 1181-1182 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited