OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17282–17287

Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating

Ye Zhou, Michael Moewe, Johannes Kern, Michael C. Y. Huang, and Connie J. Chang-Hasnain  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17282-17287 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel high-quality (Q) factor optical resonator using a subwavelength high-contrast grating (HCG) with in-plane resonance and surface-normal emission. We show that the in-plane resonance is manifested is by a sharp, asymmetric lineshape in the surface-normal reflectivity spectrum. The simulated Q factor of the resonator is shown to be as high as 500,000. A HCG-resonator was fabricated with an InGaAs quantum well active region sandwiched in-between AlGaAs layers and a Q factor of >14,000 was inferred from the photoluminescence linewidth of 0.07 nm, which is currently limited by instrumentation. The novel HCG resonator design will serve as a potential platform for many devices including surface emitting lasers, optical filters, and biological or chemical sensors.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.5750) Optical devices : Resonators

ToC Category:
Diffraction and Gratings

Original Manuscript: August 18, 2008
Revised Manuscript: October 6, 2008
Manuscript Accepted: October 6, 2008
Published: October 13, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Ye Zhou, Michael Moewe, Johannes Kern, Michael C. Huang, and Connie J. Chang-Hasnain, "Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating," Opt. Express 16, 17282-17287 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003). [CrossRef] [PubMed]
  2. T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).
  3. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004). [CrossRef] [PubMed]
  4. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006). [CrossRef]
  5. H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004). [CrossRef]
  6. E. Chow, A. Grot, L. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  7. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  8. A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005). [CrossRef]
  9. H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991). [CrossRef]
  10. R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  11. S. Peng and G. M. Morris, "Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings," Opt. Lett. 21, 549-551 (1996). [CrossRef] [PubMed]
  12. M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973). [CrossRef]
  13. C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004). [CrossRef]
  14. M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008). [CrossRef]
  15. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]
  16. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007). [CrossRef]
  17. L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008). [CrossRef]
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008). [CrossRef]
  19. M. G. Moharam, and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  20. S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003). [CrossRef]
  21. J. P. Kim and A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs," Opt. Lett. 32, 536 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited