OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17530–17541

Oxygen advection and diffusion in a three-dimensional vascular anatomical network

Qianqian Fang, Sava Sakadžić, Lana Ruvinskaya, Anna Devor, Anders M. Dale, and David A. Boas  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17530-17541 (2008)
http://dx.doi.org/10.1364/OE.16.017530


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen concentration for realistic complex vessel networks, we used a graph-based advection model combined with a finite-element based diffusion model and an implicit time-advancing scheme. We validated this algorithm for both static and dynamic conditions. We also applied it to a complex vascular network obtained from a rodent somatosensory cortex. Qualitative agreement was found with in-vivo experiments.

© 2008 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 1, 2008
Revised Manuscript: October 3, 2008
Manuscript Accepted: October 8, 2008
Published: October 15, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics
Interactive Science Publishing (2008) Optics Express

Citation
Qianqian Fang, Sava Sakadzic, Lana Ruvinskaya, Anna Devor, Anders M. Dale, and David A. Boas, "Oxygen advection and diffusion in a three- dimensional vascular anatomical network," Opt. Express 16, 17530-17541 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infra-red transillumination," Med. Biol. Eng. Comput. 26,289-294 (1988). [CrossRef] [PubMed]
  2. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20,435-442 (1997). [CrossRef] [PubMed]
  3. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50,R1-R43 (2005). [CrossRef] [PubMed]
  4. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324,361-364 (1986). [CrossRef] [PubMed]
  5. J. D. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22,R35-R66 (2001). [CrossRef]
  6. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21,195-201 (2001). [CrossRef] [PubMed]
  7. A. Villringer, A. Them, U. Lindauer, K. Einhaupl, and U. Dirnagl, "Capillary perfusion of the rat brain cortex," Circ. Res. 75,55-62 (1994). [PubMed]
  8. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. USA 95,15741-15746 (1998). [CrossRef] [PubMed]
  9. R. L. Plant and D. H. Burns, "Quantitative, depth-resolved imaging of oxygen concentration by phosphorescence lifetime measurement," Appl. Spectrosc. 47,1594-1599 (1993). [CrossRef]
  10. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, "Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels," Proc. Natl. Acad. Sci. USA 104,17255-17260 (2007). [CrossRef] [PubMed]
  11. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, "Microvascular oxygen quantification using two-photon microscopy," Opt. Lett. 33,1038-1040 (2008). [CrossRef] [PubMed]
  12. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12,041215 (2007). [CrossRef] [PubMed]
  13. B. Cense, T. C. Chen, N. Nassif, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology," Bull. Soc. Belg. Ophtalmol.123-132 (2006).
  14. R. K. Wang, S. Jacques, Z. Ma, S. Hurst, S. Hanson, and A. Gruber, " Three dimensional optical angiography," Opt. Express 15,4083-4097 (2007). [CrossRef] [PubMed]
  15. H. S. Orbach, L. B. Cohen, and A. Grinvald, "Optical mapping of electrical activity in rat somatosensory and visual cortex," J. Neurosci. 5,1886-1895 (1985). [PubMed]
  16. B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, "Imaging brain activity with voltage- and calcium-sensitive dyes," Cell. Mol. Neurobiol. 25,245-282 (2005). [CrossRef] [PubMed]
  17. B. Chance, N. Graham, and D. Mayer, "A time sharing fluorometer for the readout of intracellular oxidation-reduction states of NADH and flavoprotein," Rev. Sci. Instrum. 42,951-957 (1971). [CrossRef] [PubMed]
  18. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, "Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis," Science 305,99-103 (2004). [CrossRef] [PubMed]
  19. C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, "Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy," Adv. Exp. Med. Biol. 566,263-268 (2005). [CrossRef]
  20. Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, "A three-compartment model of the hemodynamic response and oxygen delivery to brain," NeuroImage 28,925-939 (2005). [CrossRef] [PubMed]
  21. T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27,1262-1279 (2007). [CrossRef] [PubMed]
  22. T. J. Huppert, M. S. Allen, G. S. Diamond, and D. A. Boas, "Inferring cerebral oxygen metabolism from fMRI with a dynamic multi-compartment Windkessel model," Human Brain Mapping (to be published).
  23. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, "Assessment of infant brain development with frequency-domain near-infrared spectroscopy," Pediatr. Res. 61,546-551 (2007). [PubMed]
  24. D. A. Beard and J. B. Bassingthwaighte, "Modeling advection and diffusion of oxygen in complex vascular networks," Ann. Biomed. Eng. 29,298-310 (2001). [CrossRef] [PubMed]
  25. D. D. Lobdell, "An invertible simple equation for computation of blood O2 dissociation relations," J. Appl. Physiol. 50,971-973 (1981). [PubMed]
  26. D. R. Lynch, Computational Partial Differential Equations for Environmental Scientists and Engineers - A First Practical Course (Springer, 2005). [PubMed]
  27. C. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, 2001). [CrossRef]
  28. A. S. Popel, R. N. Pittman, and M. L. Ellsworth, "Rate of oxygen loss from arterioles is an order of magnitude higher than expected." Am. J. Physiol. Heart Circ. Physiol. 256,H921-H924 (1989).
  29. M. A. Haidekker, A. G. Tsai, T. Brady, H. Y. Stevens, J. A. Frangos, E. Theodorakis, and M. Intaglietta, "A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors," Am. J. Physiol. Heart Circ. Physiol. 282,H1609-H1614. (2002). [PubMed]
  30. D. A. Boas, S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale, "A vascular anatomical network model of the spatio-temporal response to brain activation," NeuroImage 40,1116-1129 (2008). [CrossRef] [PubMed]
  31. P. Herman, H. K. Trubel, and F. Hyder, "A multiparametric assessment of oxygen efflux from the brain," J. Cereb. Blood Flow Metab. 26,79-91 (2006). [CrossRef]
  32. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985).
  33. H. H. Lipowsky, "Microvascular rheology and hemodynamics," Microcirculation 12, 5-15 (2005). [CrossRef] [PubMed]
  34. E. Vovenko, "Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats," Pflugers Arch. 437,617-623 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (16292 KB)     
» Media 2: AVI (9329 KB)     
» Media 3: AVI (12431 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited