OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17826–17841

Plasmon mediated confocal dark-field microscopy

Marcus Schmelzeisen, Jaqueline Austermann, and Maximilian Kreiter  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17826-17841 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient mode for scanning confocal dark-field microscopy through a thin gold film is established that takes advantage of the intermediate excitation of surface plasmons both in the excitation and in the emission process. This concept is verified by experimental investigation of the effective point-spread function, the intensity distribution of the scattered radiation and by comparison with a classical dark-field geometry. The wavelength-dependence of both the signal strength and the point-spread function are discussed.

© 2008 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(240.6680) Optics at surfaces : Surface plasmons
(290.5820) Scattering : Scattering measurements

ToC Category:

Original Manuscript: July 3, 2008
Revised Manuscript: August 14, 2008
Manuscript Accepted: August 14, 2008
Published: October 20, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Marcus Schmelzeisen, Jacqueline Austermann, and Maximilian Kreiter, "Plasmon mediated confocal dark-field microscopy," Opt. Express 16, 17826-17841 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal. Biochem. 298, 1-24 (2001). [CrossRef] [PubMed]
  2. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced raman-scattering," J. Phys. Condens. Matter 4, 1143-1212 (1992). [CrossRef]
  3. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86(2005). [CrossRef]
  5. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005). [CrossRef]
  6. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z. H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000). [CrossRef]
  7. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  8. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000). [CrossRef] [PubMed]
  9. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6759 (2002). [CrossRef]
  10. P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983). [CrossRef]
  11. H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  12. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  13. T. Okamoto and I. Yamaguchi, "Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique," J. Phys. Chem. B 107, 10321-10324 (2003). [CrossRef]
  14. Y. M. Gerbshtein, I. A. Merkulov, and D. N. Mirlin, "Transfer of Luminescence-center energy to surface plasmons," JETP Lett. 22, 35-36 (1975).
  15. H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evancescent field of propagating plasmon surface-polaritons by fluorescence and raman spectroscopy," J. Chem. Phys. 98, 10093-10095 (1993). [CrossRef]
  16. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94 (2005). [CrossRef] [PubMed]
  17. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996). [CrossRef] [PubMed]
  18. G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions," Nature Phys. Sci. 241, 20-22 (1973).
  19. E. Kretschmann and H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift Für Naturforschung Part A 23, 2135-2136 (1968).
  20. B. Sick, B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, "Surface plasmon interference excited by tightly focused laser beams," Opt. Lett. 32, 2535-2537 (2007). [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6 ed., (Cambridge University Press, 1997). [PubMed]
  23. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons Inc, Hoboten, 1988).
  24. R. E. Collin, Field Theory of Guided Waves (IEEE Press, New York, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited