OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17935–17951

Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model

Kristopher J. Rowland, Shahraam Afshar V., and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17935-17951 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the spectral properties of dielectric waveguides with low refractive index cores and binary layered claddings, such as Bragg fibers and integrated-ARROWs. We show that the full, nontrivial, 2-D spectrum of Bloch bands (hence bandgaps) of such claddings correspond, in structure and topology, to the dispersion properties of both constituent layer types; quantitatively demonstrating an intimate relationship between the bandgap and antiresonance guidance mechanisms. The dispersion functions of these layers, and the interactions thereof, thus form what we coin the Stratified Planar Anti-Resonant Reflecting OpticalWaveguide (SPARROW) model, capable of quantitative, analytic, descriptions of many nontrivial bandgap and antiresonance properties. The SPARROW model is useful for the spectral analysis and design of Bragg fibers and integrated-ARROWs with cores of arbitrary refractive index (equal to or less than the lowest cladding index). Both waveguide types are of interest for sensing and microfluidic applications due to their natural ability to guide light within low-index cores, permitting low-loss guidance within a large range of gases and liquids. A liquid-core Bragg fiber is discussed as an example, demonstrating the applicability of the SPARROW model to realistic and important waveguide designs.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(130.0130) Integrated optics : Integrated optics
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 29, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: October 19, 2008
Published: October 21, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Kristopher J. Rowland, Shahraam Afshar V., and Tanya M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Express 16, 17935-17951 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv and C. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 19, 2039-2041 (1999). [CrossRef]
  3. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Solja¡ci’c, S. Jacobs, J. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  4. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  5. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sørensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004). [CrossRef] [PubMed]
  6. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004). [CrossRef] [PubMed]
  7. T. Katagiri, Y. Matsuura, and M. Miyagi, "Photonic bandgap fiber with a silica core and multilayer dielectric cladding," Opt. Lett. 29, 557-559 (2004). [CrossRef] [PubMed]
  8. T. Katagiri, Y. Matsuura, and M. Miyagi, "All-solid single-mode bragg fibers for compact fiber devices," J. Lightwave Technol. 24, 4314-4318 (2006). [CrossRef]
  9. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightwave Technol. 11, 416-423 (1993). [CrossRef]
  10. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Waveguide loss optimization in hollow-core ARROW waveguides," Opt. Express 13, 9331-9336 (2005). [CrossRef] [PubMed]
  11. D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, "Optical characterisation of arch-shaped ARROW waveguides with liquid cores," Opt. Express 13, 10564-10570 (2005). [CrossRef] [PubMed]
  12. F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Spectral behavior of integrated antiresonant reflecting hollowcore waveguides," J. Lightwave Technol. 25, 2599-2604 (2007). [CrossRef]
  13. H. Schmidt and A. R. Hawkins, "Optofluidic waveguides: I. Concepts and implementations," Microfluid. Nanofluid. 4, 3-16 (2008). [CrossRef] [PubMed]
  14. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  15. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  16. T. Baba and Y. Kokubun, "High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer," Appl. Opt. 29, 2781-2792 (1990). [CrossRef] [PubMed]
  17. T. Baba and Y. Kokubun, "Dispersion and radiations loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," J. Quantum Electron. 28, 1689-1700 (1992). [CrossRef]
  18. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002). [PubMed]
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  20. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  21. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  22. D. Yin, H. Schmidt, J. P. Barber, and A. R. Hawkins, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710-2715 (2004). [CrossRef] [PubMed]
  23. K. J. Rowland, S. Afshar V., and T. M. Monro, "Novel low-loss bandgaps in all-silica Bragg fibers," J. Lightwave Technol. 26, 43-51 (2008). [CrossRef]
  24. F. Poli, M. Foroni, D. Giovanelli, A. Cucinotta, S. Selleri, J. B. Jensen, J. Læsgaard, A. Bjarklev, G. Vienne, C. Jakobsen, and J. Broeng, "Silica bridge impact on hollow-core Bragg fiber transmission properties," Proceedings OFC 2007 (Anaheim, California), paper OML8 (2007).
  25. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006). [CrossRef] [PubMed]
  26. J. J. Hu, G. Ren, P. Shum, X. Yu, G. Wang, and C. Lu, "Analytical method for band structure calculation of photonic crystal fibers filled with liquid," Opt. Express 16, 6668-6674 (2008). [CrossRef] [PubMed]
  27. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., ( John Wiley & Sons, Inc., 2004).
  28. M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University Press, 2002).
  29. I. M. Bassett and A. Argyros, "Elimination of polarization degeneracy in round waveguides," Opt. Express 10, 1342-1346 (2002). [PubMed]
  30. A. Argyros, "Guided modes and loss in Bragg fibres," Opt. Express 10, 1411-1417 (2002). [PubMed]
  31. J. P. Barber, D. B. Conkey, M. M. Smith, J. R. Lee, B. A. Peeni, Z. A. George, A. R. Hawkins, D. Yin, and H. Schmidt, "Hollow waveguides on planar substrates with selectable geometry cores," Proceedings CLEO 2005 (San Jos’e, California), paper CTuD4 (2005).
  32. P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt. 10, 2395-2413 (1971). [CrossRef] [PubMed]
  33. P. Viale, S. Fevrier, F Gerome, and H. Vilard, "Confinement loss computation in photonic crystal fibres using a novel perfectly matched layer design," Proceedings of the COMSOL Multiphysics user’s conference (Paris, 2005).
  34. V. Finazzi, T. M. Monro, and D. J. Richardson, "Small-core silica holey fibers: nonlinearity and confinement loss trade-offs," J. Opt. Soc. Am. B 20, 1427-1436 (2003). [CrossRef]
  35. J. Li and K. S. Chiang, "Disappearance of modes in planar Bragg waveguides," Opt. Lett. 32, 2369-2371 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited