OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18067–18081

Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics

Makoto Yamaguchi, Takashi Asano, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18067-18081 (2008)
http://dx.doi.org/10.1364/OE.16.018067


View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solid-state cavity quantum-electrodynamics (QED) has great potential owing to advances such as coupled systems combining a nanocavity and a quantum dot (QD). These systems involve two photon-emission mechanisms: the Purcell effect in the weak coupling regime and vacuum Rabi-splitting in the strong coupling regime. In this paper, we describe a third emission mechanism based on the quantum anti-Zeno effect (AZE) induced by the pure-dephasing in a QD. This is significantly enhanced by the inherent characteristics of the nanocavity. This mechanism explains the origin of strong photon emission at a cavity mode largely detuned from a QD, previously considered a counterintuitive, prima facie non-energy-conserving, light-emission phenomenon. These findings could help in controlling the decay and emission characteristics of solid-state cavity QED, and developing solid-state quantum devices.

© 2008 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: August 28, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 16, 2008
Published: October 21, 2008

Citation
Makoto Yamaguchi, Takashi Asano, and Susumu Noda, "Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics," Opt. Express 16, 18067-18081 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896−899 (2007). [CrossRef] [PubMed]
  2. T. Yoshie, A. Scherer, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200−203 (2004). [CrossRef] [PubMed]
  3. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  4. K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in a two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402−1403 (2005). [CrossRef]
  5. M. Yamaguchi, T. Asano, and S. Noda, "Origin of unexpected light emission in a coupled system of a photonic-crystal nanocavity and a quantum dot," presented at the 8th International Conference on Physics of Light-Matter Coupling in Nanostructures, Tokyo, Japan, 7-11 April 2008. [PubMed]
  6. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862−865 (2007). [CrossRef] [PubMed]
  7. K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007). [CrossRef]
  8. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282−2285 (2000). [CrossRef] [PubMed]
  9. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007). [CrossRef] [PubMed]
  10. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197−200 (2004). [CrossRef] [PubMed]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944−947 (2003). [CrossRef] [PubMed]
  12. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207−210 (2005). [CrossRef]
  13. Y. Arakawa and H. Sakai, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939−941 (1982). [CrossRef]
  14. M. Tabuchi, S. Noda, and A. Sasaki, "Mesoscopic structure in lattice-mismatched heteroepitaxial interface layers," in Science and Technology of Mesoscopic Structures (eds Namba, S., Hamaguchi, C. & Ando, T.) 379−384 (Springer Verlag, Tokyo, 1992).
  15. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, "Fine structure splitting in the optical spectra of single GaAs quantum dots," Phys. Rev. Lett. 76, 3005−3008 (1996). [CrossRef] [PubMed]
  16. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308 (2002). [CrossRef]
  17. E. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  18. I. I. Rabi, "Space quantization in a gyrating magnetic field," Phys. Rev. 51, 652 (1937). [CrossRef]
  19. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81−90 (2006). [CrossRef]
  20. A. G. Kofman and G. Kurizki, "Acceleration of quantum decay processes by frequent observations," Nature 405, 546−550 (2000). [CrossRef] [PubMed]
  21. G. S. Agarwal, M. O. Scully, and H. Walther, "Accelerating decay by multiple 2π pulses," Phys. Rev. A 63, 044101 (2001). [CrossRef]
  22. A. G. Kofman and G. Kurizki, "Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum," Phys. Rev. Lett. 87, 270405 (2001). [CrossRef]
  23. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
  24. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1990).
  25. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516−5519 (1989). [CrossRef] [PubMed]
  26. W. H. Zurek, "Pointer basis of quantum apparatus," Phys. Rev. D 24, 1516−1525 (1981). [CrossRef]
  27. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, "Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals," Science 308, 1296−1298 (2005). [CrossRef] [PubMed]
  28. J. L. Pan, "Reduction of the Auger rate in semiconductor quantum dots," Phys. Rev. B 46, 3977-3998 (1992). [CrossRef]
  29. V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited