OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18188–18193

Photonic crystal with multiple-hole defect for sensor applications

Christopher Kang and Sharon M. Weiss  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18188-18193 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal defect consisting of several subwavelength holes was investigated as a means to increase the surface area of the defect region without compromising the quality factor of the structure. Finite-difference time-domain calculations were performed to determine the relationships between the size of the multi-hole defect (MHD) region, resonance frequency, quality factor, and refractive index of the defect holes. The advantage of using the MHD for sensing applications is demonstrated through a comparison with a single hole defect (SHD) photonic crystal structure. Assuming the same monolayer thickness of biomaterial coats the defect hole walls of the MHD and SHD, the MHD has a three times larger change in resonance frequency and two times larger quality factor.

© 2008 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 3, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 17, 2008
Published: October 22, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Christopher Kang and Sharon M. Weiss, "Photonic crystal with multiple-hole defect for sensor applications," Opt. Express 16, 18188-18193 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  2. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999). [CrossRef]
  3. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (1999). [CrossRef]
  4. S. Assefa, S. J. McNab, and Y. A. Vlasov, "Transmission of slow light through photonic crystal waveguide bends," Opt. Lett. 31, 745-747 (2006). [CrossRef] [PubMed]
  5. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator," Appl. Phys. Lett. 87, 221105 (2005). [CrossRef]
  6. M. Soljačić, S. G. Johnson, and S. Fan, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  8. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999). [CrossRef]
  9. M. Lončar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  10. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004). [CrossRef]
  11. M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  12. T. Asano, B. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006). [CrossRef]
  13. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  14. C. Kang and S. M. Weiss, "Photonic crystal defect tuning for optimized light-matter interaction," Proc. of SPIE vol. 7031, 70310G (2008). [CrossRef]
  15. J. C. M. Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. Roy. Soc. London A 203, 385-420 (1904). [CrossRef]
  16. O. Levy and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997). [CrossRef]
  17. We note that our FDTD simulations are based on a 2D device and do not consider the vertical confinement factor found in the commonly used slab waveguide photonic crystals. Due to the vertical evanescent field that results from index-based waveguiding, the quality factor of the cavity is reduced. However, the simulations found in this study are still valuable for designing a slab waveguide based sensor [1].
  18. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech, 2000).
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bernel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  21. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997), Erratum, ibid.109, 4128 (1998). [CrossRef]
  22. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994). [CrossRef]
  23. G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguides for label-free DNA sensing," Biosens. Bioelectron. 23, 1572 (2008). [CrossRef] [PubMed]
  24. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, "Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching," Nanotechnology 19, 345301 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited