OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18675–18683

Silicon optical fiber

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18675-18683 (2008)
http://dx.doi.org/10.1364/OE.16.018675


View Full Text Article

Enhanced HTML    Acrobat PDF (4307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Described herein are initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods. Such semiconductor core fibers have potential to greatly influence the fields of nonlinear fiber optics, infrared and THz power delivery. More specifically, x-ray diffraction and Raman spectroscopy showed the core to be highly crystalline silicon. The measured propagation losses were 4.3 dB/m at 2.936 µm, which likely are caused by either microcracks in the core arising from the large thermal expansion mismatch with the cladding or to SiO2 precipitates formed from oxygen dissolved in the silicon melt. Suggestions for enhancing the performance of these semiconductor core fibers are provided. Here we show that lengths of an optical fiber containing a highly crystalline semiconducting core can be produced using scalable fiber fabrication techniques.

© 2008 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2290) Materials : Fiber materials
(160.4330) Materials : Nonlinear optical materials
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 15, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: October 17, 2008
Published: October 28, 2008

Citation
J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, "Silicon optical Fiber," Opt. Express 16, 18675-18683 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412 - 421 (2006). [CrossRef]
  2. V. Raghunathan, D. Borlaug, R. Rice, and B. Jalali, "Demonstration of a mid-infrared silicon Raman amplifier," Opt. Express 15, 14355 - 14362 (2007). [CrossRef] [PubMed]
  3. B. Jackson, P. Sazio, and J. Badding, "Single-Crystal semiconductor wires integrated into microstructured optical fibers," Adv. Mater. 20, 1135 - 1140 (2008). [CrossRef]
  4. T. Russell, S. Willis, M. Crookston, and W. Roh, "Stimulated Raman scattering in multi- mode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 301 - 316 (2002). [CrossRef]
  5. S. Baek and W. Roh, "Single mode Raman laser based on multimode fiber," Opt. Lett. 29, 153 - 155 (2004). [CrossRef] [PubMed]
  6. J. Ballato and E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848 - 6854 (1995). [CrossRef] [PubMed]
  7. G. M. Sheldrick, "SHELXTL version 6.1, Program for Crystal Structure Refinement," University of Gottingen: Germany, 2000.
  8. Data from www.ee.byu.edu/photonics/opticalconstants.phtml
  9. B. N. Dutta, "Lattice constants and thermal expansion of silicon up to 900 C," Phys. Status Solidi 2, 984 - 987 (1962). [CrossRef]
  10. W. L. Bond and W. Kaiser, "Interstitial versus substitutional oxygen in silicon," J. Phys. Chem Solids 16, 44 - 45 (1960). [CrossRef]
  11. S. M. Schnurre, J. Gröbner, and R. Schmid-Fetzer, "Thermodynamics and phase stability in the Si-O system," J. Non-Cryst. Solids 336, 1 - 25 (2004). [CrossRef]
  12. I. Kensuke, E. Minoru, W. Masahito, and H. Taketoshi, "Electrochemical measurement of diffusion coefficient of oxygen in silicon melt," Thermophys.Prop. 21, 199 - 201 (2000).
  13. K. Kakimoto, S. Kikuchi, and H. Ozoe, "Molecular dynamics simulation of oxygen in silicon melt," J. Cryst. Growth 198, 114 - 119 (1999). [CrossRef]
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276 - 278 (1973). [CrossRef]
  15. W. Kaiser, "Electrical and optical properties of heat-treated silicon," Phys. Rev. 105, 1751 - 1756 (1957). [CrossRef]
  16. A. K. Majumdar, E. D. Hinkley, and R. T. Menzies, "IR transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers," IEEE J. Sel. Top. Quantum Electron. 15, 408 - 410 (1979). [CrossRef]
  17. O. Saracoglu and S. Ozsoy, "Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor," Opt. Eng. 41, 598 - 600 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited