OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18752–18763

Birefringent all-solid hybrid microstructured fiber

Ryuichiro Goto, Stuart D. Jackson, Simon Fleming, Boris T. Kuhlmey, Benjamin J. Eggleton, and Kuniharu Himeno  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18752-18763 (2008)
http://dx.doi.org/10.1364/OE.16.018752


View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the characterization of a birefringent all-solid hybrid microstructured fiber, in which the core-modes are guided by both the photonic bandgap (PBG) effect and total internal reflection (TIR). Due to the twofold symmetry, modal birefringence of 1.5×10-4 and group birefringence of 2.1×10-4 were measured at 1.31 μm, which is in the middle of the second bandgap. The band structure was calculated to be different from conventional 2-D PBG fibers due to the 1-D arrangement of high-index regions. The bend loss has a strong directional dependence due to the coexistence of the two guiding mechanisms. The fiber has two important properties pertinent to PBG fibers; spectral filtering, and chromatic dispersion specific to PBG fibers. The number of high-index regions, which trap pump power (by index guiding) when the fiber is used in cladding-pumped fiber lasers, is greatly reduced so that this fiber should enable efficient cladding pumping. This structure is suitable for linearly-polarized, cladding-pumped fiber lasers utilizing the properties of PBG fibers.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 19, 2008
Revised Manuscript: October 27, 2008
Manuscript Accepted: October 27, 2008
Published: October 29, 2008

Citation
Ryuichiro Goto, Stuart D. Jackson, Simon Fleming, Boris T. Kuhlmey, Benjamin J. Eggleton, and Kuniharu Himeno, "Birefringent all-solid hybrid microstructured fiber," Opt. Express 16, 18752-18763 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Single-mode propagation into depressed-core-index photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000). [CrossRef]
  2. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A 6, 667-670 (2004). [CrossRef]
  3. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  4. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-1-309. [CrossRef] [PubMed]
  5. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1199 (1978). [CrossRef]
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  7. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  8. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004). [CrossRef]
  9. T. P. White, R. C. McPhedran, C. Martjin de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  10. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  11. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006). [CrossRef] [PubMed]
  12. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008). [CrossRef]
  13. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-20-9238. [CrossRef] [PubMed]
  14. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8452. [CrossRef] [PubMed]
  15. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov,M. E. Likhachev,M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-562. [CrossRef] [PubMed]
  16. Y. Barannikov, A. Oussov, F. Shcherbina, R. Yagodkin, V. Gapontsev, and N. Platonov, "250W, single-mode, CW, linearly-polarized fibre source in Yb wavelength range," in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CMS3 (2004).
  17. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, "Polarization maintaining hybrid TIR / bandgap all-solid photonic crystal fiber," in Proceedings of Conference on Lasers and Electro-Optics, and Conference on Quantum Electronics and Laser Science (Optical Society of America, 2008), paper CThV1 (2008). [PubMed]
  18. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, "Cladding-Pumped Yb-Doped Solid Photonic Bandgap Fiber for ASE Suppression in ShorterWavelength Region," in Proceedings of Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (Optical Society of America, 2008), paper OTuJ5 (2008). [CrossRef] [PubMed]
  19. A. Cerqueira. S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926. [CrossRef] [PubMed]
  20. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-8-3-173. [CrossRef] [PubMed]
  21. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-7-2503. [CrossRef] [PubMed]
  22. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5688. [CrossRef] [PubMed]
  23. L. Xiao, W. Jin, and M. S. Demokan, "Photonic crystal fibers confining light by both indexguiding and bandgap-guiding: hybrid PCFs," Opt. Express 15, 15637-15647 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-15637. [CrossRef]
  24. T. Hosaka, K. Okamoto, Y. Sasaki, and T. Edahiro, "Single mode fibres with asymmetrical refractive index pits on both sides of core," Electron. Lett. 17, 191-193 (1981). [CrossRef]
  25. N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibers," J. Lightwave Technol. 21, 1005-1012 (2003). (Note that, in our paper, due to superior performance in most applications, a finite difference scheme is used in the radial direction instead of the basis function expansion described in the reference.) [CrossRef]
  26. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K.W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-16-3888. [CrossRef] [PubMed]
  27. W. J. Bock and W. Urbanczyk, "Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type inteferometry," Appl. Opt. 32, 5841-5848 (1993). [CrossRef] [PubMed]
  28. M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005). [CrossRef] [PubMed]
  29. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1983). [CrossRef]
  30. H.-T. Shang, "Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres," Electron. Lett. 17, 603-605 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited