OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19208–19220

Generation of an incident focused light pulse in FDTD

İlker R. Çapoğlu, Allen Taflove, and Vadim Backman  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19208-19220 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

© 2008 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(260.1960) Physical optics : Diffraction theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Physical Optics

Original Manuscript: September 9, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: October 15, 2008
Published: November 5, 2008

Ilker R. Çapoglu, Allen Taflove, and Vadim Backman, "Generation of an incident focused light pulse in FDTD," Opt. Express 16, 19208-19220 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Boston, 2005).
  2. H. K. Roy, Y. Liu, H. Subramanian, D. Kunte, P. Pradhan, R. K. Wali, J. Koetsier, M. J. Goldberg, Z. Bogojevic, and V. Backman, "Detection of the colorectal cancer (CRC) field effect through partial wave spectroscopic microscopy (PWS)," Gastroenterology 132, A169 (2007).
  3. E. Wolf, "Electromagnetic diffraction in optical systems. I. An integral representation of the image field," Proc. Roy. Soc. A 253, 349-357 (1959). [CrossRef]
  4. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge University Press, New York, NY, 1997).
  5. R. W. Ziolkowski and J. B. Judkins, "Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response-time," J. Opt. Soc. Am. B 10, 186-198 (1993). [CrossRef]
  6. D. B. Davidson and R. W. Ziolkowski, "Body-of-revolution finite-difference time-domain modeling of spacetime focusing by a 3-dimensional lens," J. Opt. Soc. Am. A 11, 1471-1490 (1994). [CrossRef]
  7. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959). [CrossRef]
  8. W. Sun, S. Pan, and Y. Jiang, "Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method," J. Mod. Opt. pp. 2691-2700 (2006). [CrossRef]
  9. L. Cheng, H. Zhiwei, L. Fake, Z. Wei, D. W. Hutmacher, and C. Sheppard, "Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging," Opt. Express 15, 4118-4131 (2007). [CrossRef]
  10. W. A. Challener, I. K. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  11. P. T¨or¨ok, P. R. T. Munro, and E. E. Kriezis, "High numerical aperture vectorial imaging in coherent optical microscopes," Opt. Express 16, 507-523 (2008). [CrossRef] [PubMed]
  12. C. Liu and S.-H. Park, "Numerical analysis of an annular-aperture solid immersion lens," Opt. Lett. 29, 1742-1744 (2004). [CrossRef] [PubMed]
  13. J. Liu, B. Xu, and T. C. Chong, "Three-dimensional finite-difference time-domain analysis of optical disk storage system," Jpn. J. Appl. Phys. Part 1  39, 687-692 (2000). [CrossRef]
  14. K. S¸endur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004). [CrossRef]
  15. S.-Y. Sung and Y.-G. Lee, "Trapping of a micro-bubble by non-paraxial Gaussian beam: Computation using the FDTD method," Opt. Express 16, 3463-3473 (2008). [CrossRef] [PubMed]
  16. K. Choi, J. W. M. Chon, M. Gu, and B. Lee, "Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique," Opt. Express 15, 10,767-10,781 (2007). [CrossRef]
  17. M. Wang, J. Wu, J. Xu, D. Ge, H. Li, and J. Feng, "FDTD simulation on the interaction between Gaussian beam and biaxial anisotropic metamaterial slabs," Int. J. Infrared Millim. Waves 29, 167-178 (2008). [CrossRef]
  18. Y.-F. Chau and D. P. Tsai, "Near-field optics imaging in silica waveguide using near-field scanning optical microscope," Jpn. J. Appl. Phys. Part 1 46, 238-242 (2007). [CrossRef]
  19. J. B. Judkins and R.W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974 (1995). [CrossRef]
  20. J. B. Judkins, C.W. Haggans, and R.W. Ziolkowski, "Two-dimensional finite-difference time-domain simulation for rewritable optical disk surface structure design," Appl. Opt. 35, 2477 (1996). [PubMed]
  21. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 1999). [PubMed]
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).
  23. S. Bochkanov and V. Bystritsky, "Computation of Gauss-Legendre quadrature rule nodes and weights," Alglib.net- Web Resource. Date Accessed: 08/2008. URL http://www.alglib.net/integral/gq/glegendre.php.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPEG (2146 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited