OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19396–19409

Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy

Yan Fu, T. Brandon Huff, Han-Wei Wang, Haifeng Wang, and Ji-Xin Cheng  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19396-19409 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (8079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coherent anti-Stokes Raman scattering (CARS) microscopy was applied to image myelinated fibers in different regions of a mouse brain. The CARS signal from the CH2 symmetric stretching vibration allows label-free imaging of myelin sheath with 3D sub-micron resolution. Compared with two-photon excited fluorescence imaging with lipophilic dye labeling, CARS microscopy provides sharper contrast and avoids photobleaching. The CARS signal exhibits excitation polarization dependence which can be eliminated by reconstruction of two complementary images with perpendicular excitation polarizations. The capability of imaging myelinated fibers without exogenous labeling was used to map the whole brain white matter in brain slices and to analyze the microstructural anatomy of brain axons. Quantitative information about fiber volume%, myelin density, and fiber orientations was derived. Combining CARS with two-photon excited fluorescence allowed multimodal imaging of myelinated axons and other cells. Furthermore, in vivo CARS imaging on an upright microscope clearly identified fiber bundles in brain subcortex white matter. These advances open up new opportunities for the study of brain connectivity and neurological disorders.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 16, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: November 6, 2008
Published: November 10, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Yan Fu, T. B. Huff, Han-Wei Wang, Ji-Xin Cheng, and Haifeng Wang, "Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy," Opt. Express 16, 19396-19409 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Stys, "White matter injury mechanisms," Curr. Mol. Med. 4, 113-130 (2004). [CrossRef] [PubMed]
  2. W. T. Regenold, P. Phatak, C. M. Marano, L. Gearhart, C. H. Viens, and K. C. Hisley, "Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression," Psychiatry Res. 151, 179-188 (2007). [CrossRef] [PubMed]
  3. S. J. Wright, V. E. Centonze, S. A. Stricker, P. J. De Vries, S. W. Paddock, and G. Schatten, "Introduction to confocal microscopy and three-dimensional reconstruction," Methods Cell Biol. 38, 1-45 (1993). [CrossRef] [PubMed]
  4. B. Stankoff, Y. Wang, M. Bottlaender, M.-S. Aigrot, F. Dolle, C. Wu, D. Feinstein, G.-F. Huang, F. Semah, C. A. Mathis, W. Klunk, R. M. Gould, C. Lubetzki, and B. Zalc, "Imaging of CNS myelin by positronemission tomography," Proc. Natl. Acad. Sci. USA 103, 9304-9309 (2006). [CrossRef] [PubMed]
  5. A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell, "Exploring connectivity of the brain's white matter with dynamic queries," IEEE Trans. Visualization Computer Graphics, 1-12 (2004).
  6. S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. M. van Zijl, and S. Mori, "Fiber tract-based atlas of human white matter anatomy," Radiology 230, 77-87 (2004). [CrossRef]
  7. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  8. J. X. Cheng, "Coherent anti-Stokes Raman scattering microscopy," Appl. Spectrosc. 61, 197A-206A (2007). [CrossRef]
  9. M. Müller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156-2170 (2007). [CrossRef] [PubMed]
  10. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons Inc., New York, 1984).
  11. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  12. H. Wang, T. T. Le, and J. X. Cheng, "Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope," Opt. Comm. 281, 1813-1822 (2008). [CrossRef]
  13. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007). [CrossRef] [PubMed]
  14. T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J.-X. Cheng, "Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma," Molecular Imaging 6, 205-211 (2007). [PubMed]
  15. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef] [PubMed]
  16. T. B. Huff and J. X. Cheng, "In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue," J. Microsc. 225, 175-182 (2007). [CrossRef] [PubMed]
  17. T. Hellerer, C. Axâng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007). [CrossRef] [PubMed]
  18. P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic neurochemistry: molecular, cellular, and medical aspects, 5th ed., G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott Williams & Wilkins, Philadelphia, 1999).
  19. Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium dependent pathway in lyso-PtdCho induced demyelination," J. Neurosci. Res. 85, 2870-2881 (2007). [CrossRef] [PubMed]
  20. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, "Chemically-selectivity imaging of brain structure with CARS microscopy," Opt. Express 15, 12076-12087 (2007). [CrossRef] [PubMed]
  21. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues," Biophys. J. 92, 3251-3259 (2007). [CrossRef] [PubMed]
  22. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, "Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 100, 9826-9830 (2003). [CrossRef] [PubMed]
  23. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105-2115 (1999). [CrossRef]
  24. J. X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology " Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  25. I. Micu, A. Ridsdale, L. Zhang, J. Woulfe, J. McClintock, C. A. Brantner, S. B. Andrews, and P. K. Stys, "Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy," Nat. Med. 7, 874-879 (2007). [CrossRef]
  26. X. L. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-735 (2006). [CrossRef] [PubMed]
  27. H. Axer and D. G. V. Keyserlingk, "Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy," J. Neurosci. Methods 94, 165-175 (2000). [CrossRef] [PubMed]
  28. J. Pujol, A. López-Sala, J. Deus, N. Cardoner, N. Sebastian-Galles, G. Conesa, and A. Capdevila, "The lateral asymmetry of the human brain studied by volumetric MRI," NeuroImage 17, 670-679 (2002). [CrossRef] [PubMed]
  29. C. Laule, E. Leung, D. K. B. Li, A. L. Traboulsee, D. W. Paty, A. L. Mackay, and G. R. W. Moore, "Myelin water imaging in multiple slcerosis: quantitative correlations with histopathology," Multiple Sclerosis 12, 747-753 (2006). [CrossRef]
  30. K. J. Plessen, R. Grüner, A. Lundervold, J. G. Hirsch, D. Xu, R. Bansal, A. Hammar, A. J. Lundervold, T. Wentzel-Larsen, S. A. Lie, A. Gass, B. S. Peterson, and K. Hugdahl, "Reduced white matter connectivity in corpus callosum of children with Tourette syndrome," J. Child Psychol. Psychiatry 47, 1013-1022 (2006). [CrossRef] [PubMed]
  31. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  32. T. Misgeld and M. Kerschensteiner, "In vivo imaging of the diseased nervous system," Nat. Rev. Neurosci. 7, 449-463 (2006). [CrossRef] [PubMed]
  33. P. Marsh, D. Burns, and J. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy," Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  34. M. Rueckel, J. A. Mack-Bucher, and W. Denk, "Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing," Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006). [CrossRef] [PubMed]
  35. H. Wang, T. B. Huff, Y. Fu, Y. K. Jia, and J. X. Cheng, "Increasing the imaging depth of coherent anti- Stokes Raman scattering microscopy with a miniature microscope objective," Opt. Lett. 32, 2212-2214 (2007). [CrossRef] [PubMed]
  36. K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, "Next-generation optical technolgies for illuminating genetically targeted brain circuits," J. Neurosci. 41, 10380-10386 (2006). [CrossRef]
  37. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91, 1908-1912 (2004). [CrossRef]
  38. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. USA 100, 7081-7086 (2003). [CrossRef] [PubMed]
  39. Q1. T. B. Huff, Y. Shi, Y. Fu, H. Wang, and J. X. Cheng, "Multimodal nonlinear optical microscopy and applications to central nervous system imaging," IEEE J. Sel. Top. Quant. Electron. 14, 4-9 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited