OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19579–19591

Optical properties of gold-silica-gold multilayer nanoshells

Ying Hu, Ryan C. Fleming, and Rebekah A. Drezek  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19579-19591 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral and angular radiation properties of gold-silica-gold multilayer nanoshells are investigated using Mie theory for concentric multilayer spheres. The spectral tunability of multilayer nanoshells is explained and characterized by a plasmon hybridization model and a universal scaling principle. A thinner intermediate silica layer, scaled by particle size, red shifts the plasmon resonance. This shift is relatively insensitive to the overall particle size and follows the universal scaling principle with respect to the resonant wavelength of a conventional silica-gold core-shell nanoshell. The extra tunability provided by the inner core further shifts the extinction peak to longer wavelengths, which is difficult to achieve on conventional sub-100 nm nanoshells due to limitations in synthesizing ultrathin gold coatings. We found multilayer nanoshells to be more absorbing with a larger gold core, a thinner silica layer, and a thinner outer gold shell. Both scattering intensity and angular radiation pattern were found to differ from conventional nanoshells due to spectral modulation from the inner core. Multilayer nanoshells may provide more backscattering at wavelengths where silica-gold core-shell nanoshells predominantly forward scatter.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: September 29, 2008
Revised Manuscript: November 7, 2008
Manuscript Accepted: November 8, 2008
Published: November 12, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Ying Hu, Ryan C. Fleming, and Rebekah A. Drezek, "Optical properties of gold-silica-gold multilayer nanoshells," Opt. Express 16, 19579-19591 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gulati, H. Liao, and J. H. Hafner, "Monitoring gold nanorod synthesis by localized surface plasmon resonance," J. Phys. Chem. B 110, 323-22, 327 (2006). [CrossRef]
  2. C. Nehl, H. Liao, and J. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006). [CrossRef] [PubMed]
  3. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007). [CrossRef] [PubMed]
  4. R. Averitt, D. Sarkar, and N. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth," Phys. Rev. Lett. 78, 4217-4220 (1997). [CrossRef]
  5. R. Averitt, S. Westcott, and N. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  6. L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, "Metal nanoshells," Ann. Biomed. Eng. 34, 15-22 (2006). [CrossRef] [PubMed]
  7. H. Wang, D. Brandl, F. Le, P. Nordlander, and N. Halas, "Nanorice: A hybrid plasmonic nanostructure," Nano Lett. 6, 827-832 (2006). [CrossRef] [PubMed]
  8. H. Cang, T. Sun, Z. Li, J. Chen, B. Wiley, Y. Xia, and X. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005). [CrossRef] [PubMed]
  9. E. Prodan and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Lett. 3, 543-547 (2003). [CrossRef]
  10. M. Landsman, G. Kwant, G. Mook, and W. Zijlstra, "Light-absorbing properties, stability, and spectral stabilization of indocyanine green," J. App. Physiol. 40, 575-583 (1976).
  11. C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells." Opt. Lett. 30, 1012-1014 (2005). [CrossRef] [PubMed]
  12. A. Lin, N. Lewinski, J. West, N. Halas, and R. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 315102 (2005). [CrossRef]
  13. V. Nammalvar, A. Wang, and R. Drezek, "Enhanced gold nanoshell scattering contrast in cervical tissue using angled fiber probes," in Nanoscale imaging, spectroscopy, sensing and actuation for biomedical applications IV, Proceedings of SPIE, A. N. Cartwright and D. V. Nicolau, eds., vol. 6447 (2007).
  14. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwatz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, "Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells," Opt. Express 16, 1590-1599 (2008). [CrossRef] [PubMed]
  15. L. Bickford, J. Sun, K. Fu, N. Lewinski, V. Nammalvar, J. Chang, and R. Drezek, "Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy," Nanotechnology 19, 315102 (2008). [CrossRef] [PubMed]
  16. A. R. Lowery, A. M. Gobin, E. S. Day, N. J. Halas, and J. L. West, "Immunonanoshells for targeted photothermal ablation of tumor cells," Int. J. Nanomed. 1, 149-154 (2006). [CrossRef]
  17. M. Bikram, A. M. Gobin, R. E. Whitmire, and J. L. West, "Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery," J. Control. Release 123, 219-227 (2007). [CrossRef] [PubMed]
  18. S. Oldenburg, J. Jackson, S. Westcott, and N. Halas, "Infrared extinction properties of gold nanoshells," Appl. Phys. Lett. 75, 2897-2899 (1999). [CrossRef]
  19. R. Weissleder, "A clearer vision for in vivo imaging," Nature Biotechnol. 19, 316-317 (2001). [CrossRef]
  20. P. K. Jain and M. A. El-Sayed, "Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells," Nano Lett. 7, 2854-2858 (2007). [CrossRef] [PubMed]
  21. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, "Engineering sub-100 nm multi-layer nanoshells," Nanotechnology 17, 5435-5440 (2006). [CrossRef]
  22. K. Chen, Y. Liu, G. Ameer, and V. Backman, "Optimal design of structures nanoshperes for ultrasharp lightscattering resonances as molecular imaging multilabels," J. Biomed. Opt. 10, 024005 (2005). [CrossRef] [PubMed]
  23. B. Khlebtsov and N. Khlebtsov, "Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions," J. Biomed. Opt. 11, 044002 (2006). [CrossRef] [PubMed]
  24. L. LizMarzan, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles," Langmuir 12, 4329-4335 (1996).
  25. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Antireflection coating for improved optical trapping," J. Appl. Phys. 103, 093,119 (2008). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  28. H. Wang, K. Fu, R. A. Drezek, and N. J. Halas, "Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness," Appl. Phys. B-Lasers O. 84, 191-195 (2006). [CrossRef]
  29. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, "Symmetry breaking in individual plasmonic nanoparticles," P. Natl. Acad. Sci. USA 103, 10,856-10,860 (2006).
  30. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett. 8, 1212-1218 (2008). [CrossRef] [PubMed]
  31. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  32. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  33. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, "Observation of intrinsic size effects in the optical response of individual gold nanoparticles," Nano Lett. 5, 515-518 (2005). [CrossRef] [PubMed]
  34. B. N. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, "Spectra of resonance light scattering of gold nanoshells: Effects of polydispersity and limited electron free path," Opt. Spectrosc. 102, 233-241 (2007). [CrossRef]
  35. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, "Scattering spectra of single gold nanoshells," Nano Lett. 4, 2355-2359 (2004). [CrossRef]
  36. P. Jain, K. Lee, I. El-Sayed, and M. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006). [CrossRef] [PubMed]
  37. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  38. K. Fu, J. Sun, A.W. H. Lin, H. Wang, N. J. Halas, and R. A. Drezek, "Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells," Curr. Nanosci. 3, 167-170 (2007). [CrossRef]
  39. P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007). [CrossRef]
  40. Y. Wang, W. Qian, Y. Tan, and S. Ding, "A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood," Biosens. Bioelectron. 23, 1166-1170 (2008). [CrossRef]
  41. E. M. Larsson, J. Alegret, M. Käll, D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007). [CrossRef] [PubMed]
  42. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486-3495 (2006). [CrossRef] [PubMed]
  43. A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, (2006). [CrossRef] [PubMed]
  44. Y. Han, J. Jiang, S. S. Lee, and J. Y. Ying, "Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles," Langmuir 24, 5842-5848 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (199 KB)     
» Media 2: MOV (2415 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited