OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19649–19666

Growth, processing, and optical properties of epitaxial Er2O3 on silicon

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 19649-19666 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er3+ density 100×greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er 2O3 epitaxially grown on silicon. A peak Er3+ resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(230.5750) Optical devices : Resonators

ToC Category:

Original Manuscript: August 25, 2008
Revised Manuscript: November 6, 2008
Manuscript Accepted: November 8, 2008
Published: November 12, 2008

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, "Growth, processing, and optical properties of epitaxial Er2O3 on silicon," Opt. Express 16, 19649-19666 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, Berlin, 2004).
  2. J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995). [CrossRef]
  3. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997). [CrossRef]
  4. P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997). [CrossRef]
  5. R. D. Kekatpure, A. R. Guichard, and M. L. Brongersma, "Free-carrier absorption in Si nanocrystals probed by microcavity photoluminescence," in Conference on Lasers and Electro-Optics (CLEO), p. CTuJ3 (Optical Society of America, San Jose, CA, 2008).
  6. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002). [CrossRef]
  7. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).
  8. R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986). [CrossRef]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  10. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006). [CrossRef]
  11. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998). [CrossRef]
  12. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005). [CrossRef]
  13. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  14. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007). [CrossRef] [PubMed]
  15. A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997). [CrossRef]
  16. H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004). [CrossRef]
  17. K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004). [CrossRef]
  18. S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004). [CrossRef]
  19. A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006). [CrossRef]
  20. K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006). [CrossRef]
  21. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, Inc., New York, 2002).
  22. P. B. Atanackovic, "Rare earth-oxides, rare earth-nitrides, rare earth-phosphides, and ternary alloys with silicon," U.S. Patent 7199015 (Dec. 28, 2004).
  23. R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005). [CrossRef]
  24. J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966). [CrossRef]
  25. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982). [CrossRef]
  26. R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982). [CrossRef]
  27. H. J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, and A. Fissel, "Molecular Beam Epitaxy of Rare-Earth Oxides," in Rare Earth Oxide Thin Films, M. Fanciulli and G. Scarel, eds. (Springer-Verlag, Berlin, 2007).
  28. The Er2O3(111) orientation is rotated 180. about the Si(111) surface normal.
  29. The short wavelengths (S), conventional (C), and long wavelengths (L) telecommunications windows (bands) are relative to the region of lowest optical loss in silica fiber (⌊¡Ö 1550 nm) and occur at 1460-1530 nm, 1530-1565 nm, and 1565-1625 nm, respectively. These designations are not strictly applied in this report as that the absorption extends into the E-band (extended, 1360-1460 nm) and the emission in Fig. 8 continues through the U-band (ultralong wavelengths, 1625-1675 nm).
  30. H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008). [CrossRef]
  31. H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001). [CrossRef]
  32. B. J. Ainslie, "A Review of the fabrication and properties of Erbium-doped fibers for optical amplifiers," IEEE J. Lightwave Technol. 9, 220-227 (1991). [CrossRef]
  33. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515 (2005). [CrossRef] [PubMed]
  34. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007). [CrossRef] [PubMed]
  35. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005). [CrossRef]
  36. J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008). [CrossRef]
  37. J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985). [CrossRef]
  38. The intrinsic loss rate (©i) and loss coefficient (〈i) are related through the material- and device-dependent group velocity (vg): 〈i = ©i/vg.
  39. M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968). [CrossRef]
  40. L. A. Riseberg and M. J. Weber, "Relaxation phenomena in rare-earth luminescence," in Progress in Optics, vol. XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976).
  41. L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968). [CrossRef]
  42. G. Schaack and J. A. Koningstein, "Phonon and electronic Raman spectra of cubic rare-earth oxides and isomorphous yttrium oxide," J. Opt. Soc. Am. 60, 1110-1115 (1970). [CrossRef]
  43. L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966). [CrossRef]
  44. D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954). [CrossRef]
  45. W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968). [CrossRef]
  46. M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971). [CrossRef]
  47. J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972). [CrossRef]
  48. R. J. Birgeneau, "Mechanisms of energy transport between rare-earth ions," Appl. Phys. Lett. 13, 193-195 (1968). [CrossRef]
  49. E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975). [CrossRef]
  50. N. Nikonorov, A. Przhevuskii, M. Prassas, and D. Jacob, "Experimental determination of the upconversion rate in erbium-doped silicate glasses," Appl. Opt. 38, 6284-6291 (1999). [CrossRef]
  51. P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003). [CrossRef]
  52. S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986). [CrossRef]
  53. P. Xie and S. C. Rand, "Continuous-wave, pair-pumped laser," Opt. Lett. 15, 848-850 (1990). [CrossRef] [PubMed]
  54. P. Xie and S. C. Rand, "Visible cooperative upconversion laser in Er:LiYF4," Opt. Lett. 17, 1198-1200 (1992). [CrossRef] [PubMed]
  55. M. Borselli, T. J. Johnson, and O. Painter, "Accurate measurement of scattering and absorption loss in microphotonic devices," Opt. Lett. 32, 2954-2956 (2007). [CrossRef] [PubMed]
  56. K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007). [CrossRef]
  57. K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007). [CrossRef]
  58. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006). [CrossRef]
  59. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996). [CrossRef] [PubMed]
  60. J. E. Heebner, T. C. Bond, and J. S. Kallman, "Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators," Opt. Express 15, 4452-4473 (2007). [CrossRef] [PubMed]
  61. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984).
  62. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, "Splitting of high- Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995). [CrossRef] [PubMed]
  63. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000). [CrossRef]
  64. K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007). [CrossRef]
  65. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  66. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007). [CrossRef]
  67. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004). [CrossRef]
  68. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  69. The higher order quasi-TE modes have large bending losses (Q <100) and are poorly phase-matched to the taper waveguide. Since they cannot be observed in transmission or taper-collected PL, all necessary parameters are obtained through finite element simulations.
  70. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundementals and Technology, Optics and Photonics (Academic Press, San Diego, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited