OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19850–19864

Optical plasmonic resonances in split-ring resonator structures: an improved LC model

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19850-19864 (2008)
http://dx.doi.org/10.1364/OE.16.019850


View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We systematically investigate the resonant behavior of arrays of Ag nano-structures ranging from isolated simple rods, to U-shapes, to single split ring structures. We show that the lowest order plasmonic resonance associated with a rod red shifts as we create a U and SRR into the position normally associated with a simple LC mode. A second mode red shifts and grows in intensity as we extend the arms of the U-shape, and a third mode appears in the spectra as we close the arms and form a split ring structure. We performed simulations of the structures and examine the E-field and current density. The simulations show that the current path is different for these modes. We examine the behavior of the lowest order mode in detail, discuss the effects of skin depth, and present an improved LC model to describe this resonance.

© 2008 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 26, 2008
Revised Manuscript: October 23, 2008
Manuscript Accepted: October 25, 2008
Published: November 17, 2008

Citation
T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, "Optical plasmonic resonances in split-ring resonator structures: an improved LC model," Opt. Express 16, 19850-19864 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19850


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  4. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 10, 7181-7188 (2008). [CrossRef]
  5. D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Science 84, 4184-4187 (2000).
  6. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A:Pure Appl. Opt. 7, S12-S22 (2005). [CrossRef]
  7. M. I. Stockman, "Does nature allow negative refraction with low losses in optical region?" J. Cond. Mat. 14, 0611350 (2006).
  8. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials,"Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  9. N. Katsarakis, G. Konstantininidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Opt. Lett. 30, 1348-1350 (2005). [CrossRef] [PubMed]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz,"Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  11. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  12. V. Shalaev, W. Cai, U. K. Chettiar, H-K Yuan, A. K. Sarychev, V. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamatrerials," Opt. Lett. 3253-55 (2007). [CrossRef]
  14. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005). [CrossRef] [PubMed]
  15. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, "The science of negative index materials," J. Phys.: Condens. Matter 20, 304217 (2008). [CrossRef]
  16. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature Lett. (2008), http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature07247.html. [CrossRef]
  17. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reintretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827-8836 (2006). [CrossRef] [PubMed]
  18. T. P. Meyrath, T. Zentgraf, and H. Giessen, "Lorentz model for metamaterials: Optical frequency resonance circuits," Phys. Rev. B 75, 205102 (2007).
  19. U. Kreibig, and M. Vollmer, Optical properties of Metal clusters (Springer-Verlag, 1995).
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099- 1119 (1983). [CrossRef] [PubMed]
  21. E. D. Palik, Handbook of optical constants of solids (Academic, 1985).
  22. K. Füchsel, U. Schulz, N. Kaiser, and A. Tünnermann, "Low temperature deposition of indium tin oxide films by plasma ion-assisted evaporation," Appl. Opt. 47, C297-C302 (2008).
  23. J. Ederth, G. A. Niklasson, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doom, M. J. Jongerius, and D. Burgard, "Characterization of porous indium tin oxide films using effective medium theory," J. Appl. Phys. 93, 984-988 (2003). [CrossRef]
  24. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). Online supplement: http://www.sciencemag.org/cgi/content/full/sci;306/5700/1351/DC1. [CrossRef] [PubMed]
  25. C. Wasshuber Dissertation found at http://www.iue.tuwien.ac.at/phd/wasshuber/node77.html, and W. R. Smythe, Static and Dynamic Electricity 2nd ed. (McGraw-Hill, 1950), in § 5.08 p. 118 the capacitance between two spheres is studied.
  26. J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley and Sons, 1975). Equation 6 is taken from the general expression δ =c/(2πωσ)1/2 and ε -1= ωp2/ω2 = 4πiσ/ω.
  27. F. W. Grover, Inductance Calculations (Dover, 1973), p. 261.
  28. M. A. Bueno and A. K. T. Assis, "A new method for inductance calculations," J. Phys. D Appl. Phys. 281802-1806 (1995). [CrossRef]
  29. M. A. Bueno and A. K. T. Assis, Inductance and force calculations in electrical circuits (Nova Science, 2001).
  30. M. A. Bueno and A. K. T. Assis, Inductance and force calculations in electrical circuits (Nova Science, 2001), p. 24, 30. See http://www.ifi.unicamp.br/~assis/wbooks.htm for correction to eq. 3.2.
  31. M. A Bueno and A. K. T. Assis, Inductance and force calculations in electrical circuits (Nova Science, 2001), p. 40.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited