OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20106–20116

End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile

Ralf Wilhelm, Denis Freiburg, Maik Frede, and Dietmar Kracht  »View Author Affiliations

Optics Express, Vol. 16, Issue 24, pp. 20106-20116 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach for scaling end-pumped rod lasers to high output powers by employing a crystal with a continuously varying, nearly hyperbolic dopant concentration profile, resulting in a homogenization of the longitudinal temperature distribution, is presented. The crystal is characterized by determining its dopant concentration profile with an absorption measurement. The fluorescence upon spectrally narrow excitation is recorded, indicating the role of quenching of the upper laser level at high dopant concentration. The on-axis temperature distribution is calculated by employing a Fourier-Bessel approach for solving the stationary heat conduction equation, taking the temperature dependence of the heat conductivity and the dependence of the heat fraction on the dopant concentration into account. Experimentally, a maximum output power of 187W at an optical-to-optical efficiency of 53 % has been demonstrated.

© 2008 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 22, 2008
Revised Manuscript: October 24, 2008
Manuscript Accepted: October 27, 2008
Published: November 21, 2008

Ralf Wilhelm, Denis Freiburg, Maik Frede, and Dietmar Kracht, "End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile," Opt. Express 16, 20106-20116 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, "Scaling CW Diode-End-Pumped Nd:YAG Lasers to High Average Powers," IEEE J. Quantum Electron. 28, 997-1009 (1992). [CrossRef]
  2. R. Wilhelm, M. Frede, and D. Kracht, "Power Scaling of End-Pumped Solid-State Rod Lasers by Longitudinal Dopant Concentration Gradients," IEEE J. Quantum Electron. 44, 232-244 (2008). [CrossRef]
  3. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt. Express 12, 3581-3589 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-15-3581. [CrossRef] [PubMed]
  4. D. Kracht, R. Wilhelm, M. Frede, K. Dupr’e, and L. Ackermann, "407 W End- Pumped Multi-Segmented Nd:YAG Laser," Opt. Express 13, 10140-10144 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10140. [CrossRef] [PubMed]
  5. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1996).
  6. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-Inversion Densities in Nd:YAG: Upconversion and Bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998). [CrossRef]
  7. R. C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1998). [CrossRef]
  8. A. A. Kaminskij, Laser Crystals: Their Physics and Properties (Springer, Berlin, 1981).
  9. D. C. Brown, "Heat, Fluorescence, and Stimulated-Emission Power Densities and Fractions in Nd:YAG," IEEE J. Quantum Electron. 34, 560-572 (1998). [CrossRef]
  10. D. T. C. Hurle, Handbook of Crystal Growth, Vol. 2A (North-Holland, Amsterdam, 1994).
  11. K. Becker, "Einkristallz¨uchtung" in Ullmans Enzylopadie der technischen Chemie (Verlag Chemie, Weinheim, 1978).
  12. G. Bitz, Investigation of Correlations between the Optical Properties and the Laser Specific Parameters of Laser- Active Solid-State Materials (PhD thesis, Universitat Kaiserslautern, 2001). [PubMed]
  13. V. Lupei, A. Lupei, S. Georgescu, and C. Ionescu, "Energy Transfer Between Nd3+ Ions in YAG," Opt. Commun. 60, 59-63 (1986). [CrossRef]
  14. T. Y. Fan, "Heat Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993). [CrossRef]
  15. R. Wilhelm, M. Frede, D. Freiburg, D. Kracht, and C. Fallnich, "Thermal Design of Segmented Rod Laser Crystals," in Advanced Solid-State Photonics 2005 Technical Digest on CD-ROM (The Optical Society of America, Washington, DC, 2005), paper MB46.
  16. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. H¨ugel, "A 1-kW CW Thin Disc Laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000). [CrossRef]
  17. Y. Sato, J. Akiyama, and T. Taira, "Novel Model on Thermal Conductivity in Laser Media: Dependence on Rare-Earth Concentration," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (The Optical Society of America, Washington, DC, 2008), paper CtuQ7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited