OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 25 — Dec. 8, 2008
  • pp: 20706–20723

Light propagation from a fluorescent particle embedded in a photonic cluster of micrometer-sized dielectric spheres

T. Fujishima, H. T. Miyazaki, H. Miyazaki, Y. Jimba, T. Kasaya, K. Sakoda, Y. Ogawa, and F. Minami  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20706-20723 (2008)
http://dx.doi.org/10.1364/OE.16.020706


View Full Text Article

Enhanced HTML    Acrobat PDF (6454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In self-assembled multilayer arrays of micrometer-sized spheres that include small amounts of fluorescent particles, unique six-dot-triangular and seven-dot-hexagonal patterns have been known to appear in the fluorescence microscopic images. Although it has been suggested that these two types of patterns correspond to local domain structures, i.e., face centered cubic (fcc) or hexagonal closed packed (hcp), no conclusive evidence has been provided to support this claim. In this study, we systematically investigated the relationship between the propagation patterns and the arrangement of the particles. Through a cross-check between an experiment using well-defined clusters fabricated by a micromanipulation technique and a rigorous calculation based on the expansion of vector spherical harmonics, we confirmed that the six-dot-triangular and seven-dot-hexagonal patterns correspond to the fcc and hcp domains, respectively. Further, we also found that the propagation patterns depend on the size of the clusters. As a result of a quantitative discussion on the light propagation in clusters with various sizes, it was clarified that a sufficient domain size is necessary for the appearance of clear triangular or hexagonal patterns.

© 2008 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(220.4000) Optical design and fabrication : Microstructure fabrication
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles
(350.5500) Other areas of optics : Propagation

ToC Category:
Scattering

History
Original Manuscript: October 7, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 23, 2008
Published: December 1, 2008

Citation
T. Fujishima, H. T. Miyazaki, H. Miyazaki, Y. Jimba, T. Kasaya, K. Sakoda, Y. Ogawa, and F. Minami, "Light propagation from a fluorescent particle embedded in a photonic cluster of micrometer-sized dielectric spheres," Opt. Express 16, 20706-20723 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20706


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer Academic, Dordrecht, 2003).
  4. K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994). [CrossRef]
  5. T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996). [CrossRef]
  6. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998). [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  8. A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  9. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999). [CrossRef]
  10. N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006). [CrossRef]
  11. R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007). [CrossRef]
  12. V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998). [CrossRef]
  13. T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999). [CrossRef]
  14. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000). [CrossRef]
  15. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000). [CrossRef]
  16. ˙I. ˙I. Tarhan, M. P. Zinkin, and G. H. Watson, "Interferometric technique for the measurement of photonic band structure in colloidal crystals," Opt. Lett. 20, 1571-1573 (1995). [CrossRef] [PubMed]
  17. J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004). [CrossRef]
  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998). [CrossRef]
  19. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008). [CrossRef] [PubMed]
  20. T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, "Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes," Opt. Lett. 22, 489-491 (1997). [CrossRef] [PubMed]
  21. M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000). [CrossRef]
  22. S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).
  24. At an early stage of our research, we investigated light propagation in clusters solely composed of polystyrene (PSt) particles as in the paper by Matsushita et al. However, we found that non-fluorescent PSt particles become fluorescent upon electron beam (EB) irradiation during the micromanipulation. It was difficult to distinguish the luminescence from the dye-doped and undoped PSt particles. Since silica particles were found to be unaffected by the EB irradiation, we employed silica as non-fluorescent particles.
  25. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992). [CrossRef]
  26. F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006). [CrossRef] [PubMed]
  27. H. Miyazaki and T. Sato, "Mechanical Assembly of Three-Dimensional Microstructures from Fine Particles," Adv. Robotics 11, 169-185 (1997). [CrossRef]
  28. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000). [CrossRef]
  29. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002). [CrossRef]
  30. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003). [CrossRef] [PubMed]
  31. H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003). [CrossRef]
  32. H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004). [CrossRef]
  33. T. Kasaya and H. T. Miyazaki, "Graphical Templates for Accurate Micromanipulation in a Scanning Electron Microscope," Rev. Sci. Instrum., submitted. [PubMed]
  34. H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000). [CrossRef]
  35. The directions of the eight inverted points are [±1±1±1], [±1±1∓5], [±1∓5±1], and [∓5±1±1].
  36. The dye molecules doped in the PSt particles gradually degrade upon electron beam irradiation. Therefore, the time allowed for the manipulation is limited. Since the top layer of the class-2 or larger clusters is composed of a large number of particles, it was difficult to assemble sufficiently accurate lattices within the limited time.
  37. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002). [CrossRef]
  38. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003). [CrossRef]
  39. A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003). [CrossRef]
  40. K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996). [CrossRef]
  41. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (24 KB)      QuickTime
» Media 2: MOV (25 KB)      QuickTime
» Media 3: MOV (33 KB)      QuickTime
» Media 4: MOV (37 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited