OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21282–21296

Modeling thermal effects and polarization competition in vertical-cavity surface-emitting lasers

C. Masollera and M. S. Torreb  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21282-21296 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the influence of thermal effects on the polarization-resolved light-current (LI) characteristics of vertical-cavity surface-emitting lasers (VCSELs). We use a model that is an extension of the spin-flip model incorporating material gain that is frequency and temperature dependent, and a rate equation for the temperature of the active region, which takes into account decay to a fixed substrate temperature, Joule heating and nonradiative recombination heating. The model also incorporates the red shift for increasing temperature of the gain curve and of the cavity resonance. The temperature sensitivity of the lasing threshold current is found to be in good qualitative agreement with observations and with previous reports based on detailed microscopic models. The temperature dependence of the polarization switching point, when the dominant polarization turn off and the orthogonal polarization emerges, is characterized in terms of various model parameters, such as the room-temperature gain-cavity offset, the subtracte temperature, and the size of the active region.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: October 31, 2008
Revised Manuscript: November 26, 2008
Manuscript Accepted: November 26, 2008
Published: December 9, 2008

C. Masoller and M. S. Torre, "Modeling thermal effects and polarization competition in vertical-cavity surface-emitting lasers," Opt. Express 16, 21282-21296 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lei, and J. K. Guenter, eds., Vertical-Cavity Surface-Emitting Lasers X II, Proc. SPIE 6908, 2008.
  2. Y. Suematsu and K. Iga, "Semiconductor lasers in photonics," J. Lightwave Technol. 26, 1132-1144 (2008). [CrossRef]
  3. S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, and M. Hammar, "Temperature sensitivity of the threshold current of long-wavelength InGaAs-GaAsVCSELs with large gain-cavity detuning," IEEE J. Quantum Electron. 40, 453-462 (2004). [CrossRef]
  4. E. S. Bjorlin, J. Geske, M. Mehta, J. Piprek, and J. E. Bowers, "Temperature dependence of the relaxation resonance frequency of long-wavelength vertical-cavity lasers," IEEE Photon. Technol. Lett. 17, 944-946 (2005). [CrossRef]
  5. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, "Cavity mode-gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 degrees C," IEEE Photon. Technol. Lett. 19, 121-123 (2007). [CrossRef]
  6. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Vonlehmen, L. T. Florez and N. G. Stoffel, "Dynamic, polarization and transverse-mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991). [CrossRef]
  7. K. D. Choquette, R. P. Schneider, K. L. Lear and R. E. Leibenguth, "Gain-dependent polarization properties of vertical-cavity lasers," IEEE J. Sel. Top. Quantum Electron. 1, 661-666 (1995). [CrossRef]
  8. M. B. Willemsen, M. U. F. Khalid, M. P. van Exter, and J. P. Woerdman, "Polarization switching of a vertical-cavity semiconductor laser as a Kramers hopping problem," Phys. Rev. Lett. 82, 4815-4818 (1999). [CrossRef]
  9. J. Kaiser, C. Degen, and W. Elsasser, "Polarization-switching influence on the intensity noise of vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 19, 672-677 (2002). [CrossRef]
  10. J. Paul, C. Masoller, Y. Hong, P. S. Spencer, and K. A. Shore, "Experimental study of polarization switching of vertical-cavity surface-emitting lasers as a dynamical bifurcation,"Opt. Lett. 31, 748-750 (2006). [CrossRef] [PubMed]
  11. J. Martin-Regalado, F. Prati, M. San Miguel and N. B. Abraham, "Polarization properties of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 765-783 (1997). [CrossRef]
  12. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, "Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics," Opt. Lett. 24, 1121-1123 (1999). [CrossRef]
  13. M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, "Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers," Phys. Rev. A. 68, 033822 (2003). [CrossRef]
  14. C. Z. Ning and J. V. Moloney, "Thermal effects on the threshold of vertical-cavity surface-emitting lasers: first- and second-order phase transitions," Opt. Lett. 20, 1151-1153 (1995). [CrossRef] [PubMed]
  15. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, "Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surfaceemitting lasers," Phys. Rev. A. 58, 3279-3292 (1998). [CrossRef]
  16. S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, "Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 2139-2147 (1996). [CrossRef]
  17. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyat, "A comprehensive circuit-level model of vertical-cavity surface-emitting lasers," J. Lightwave Technol. 17, 2612-2632 (1999). [CrossRef]
  18. H. C. Schneider, A. J. Fischer, W. W. Chow, and J. F. Klem, "Temperature dependence of laser threshold in an InGaAsN vertical-cavity surface-emitting laser," Appl. Phys. Lett. 78, 3391-3393 (2001). [CrossRef]
  19. C. Degen, I. Fischer, W. Elsasser, L. Fratta, P. Debernardi, G. P. Bava, M. Brunner, R. Hovel, M. Moser, and K. Gulden, "Transverse modes in thermally detuned oxide-confined vertical-cavity surface-emitting lasers," Phys. Rev. A 63, 023817 (2001). [CrossRef]
  20. Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, "Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 41, 15-25 (2005). [CrossRef]
  21. C. Chen, P. O. Leisher, A. A. Allerman, K. M. Geib, and K. D. Choquette, "Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 42, 1078-1083 (2006). [CrossRef]
  22. C. Degen, I. Fischer, and W. Elsasser, "Thermally induced local gain suppression in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 76, 3352-3354 (2000). [CrossRef]
  23. J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002). [CrossRef]
  24. P. V. Paulau, A. J. Scroggie, A. Naumenko, T. Ackemann, N. A. Loiko, and W. J. Firth, "Localized traveling waves in vertical-cavity surface-emitting lasers with frequency-selective optical feedback," Phys. Rev. E 75, 056208 (2007). [CrossRef]
  25. L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, "Thermal effects and transverse structures in semiconductor microcavities with population inversion," Phys. Rev. A 66, 023817 (2002). [CrossRef]
  26. C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oria, "Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback," IEEE J. Quantum Electron. 43, 261-268 (2007). [CrossRef]
  27. F. Prati, P. Caccia and F. Castelli, "Effects of gain saturation on polarization switching in verticalcavity surface-emitting lasers," Phys. Rev. A 66, 063811 (2002). [CrossRef]
  28. S. Barland, P. Spinicelli, G. Giacomelli, and F. Marin, "Measurement of the working parameters of an air-post vertical-cavity surface-emitting laser," IEEE J. Quantum Electron. 41, 1235-1243 (2005). [CrossRef]
  29. E. L. Blansett, M. G. Raymer, G. Khitrova, H. M. Gibbs, D. K. Serkland, A. A. Allerman, and K. M. Geib, "Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers," Opt. Express 9, 312-318 (2001). [CrossRef] [PubMed]
  30. G. Van der Sande, M. Peeters, I. Veretennicoff, J. Danckaert, G. Verschaffelt, and S. Balle, "The effects of stress, temperature, and spin flips on polarization switching in vertical-cavity surfaceemitting lasers," IEEE J. Quantum Electron. 42, 898-906 (2006). [CrossRef]
  31. A. Homayounfar and M. J. Adams, "Analysis of SFM dynamics in solitary and optically-injected VCSELs," Opt. Express 15, 10504-10519 (2007). [CrossRef] [PubMed]
  32. C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, "Analog modulation properties of oxide confined VCSELs at microwave frequencies," J. Lightwave Technol. 20, 1740-1749 (2002). [CrossRef]
  33. G. Verschaffelt, J. Albert, B. Nagler, M. Peeters, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, "Frequency response of polarization switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 39, 1177-1186 (2003). [CrossRef]
  34. C. Degen, I. Fischer and W. Elsasser, "Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999) [CrossRef] [PubMed]
  35. D. M. Grasso and K. D. Choquette, "Temperature-dependent polarization characteristics of composite-resonator vertical-cavity lasers," IEEE J. Quantum Electron. 41, 127-131 (2005). [CrossRef]
  36. J. Rudolph, S. Dohrmann, D. Hagele, M. Oestreich, and W. Stolz, "Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons," Appl. Phys. Lett. 87, 241117 (2005). [CrossRef]
  37. M. Holub, J. Shin, D. Saha, and P. Bhattacharya, "Electrical spin injection and threshold reduction in a semiconductor laser," Phys. Rev. Lett. 98, 146603 (2007). [CrossRef] [PubMed]
  38. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Amsterdam, The Netherlands: Kluwer, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited