OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21321–21332

Design of high-Q photonic crystal microcavities with a graded square lattice for application to quantum cascade lasers

Y. Wakayama, A. Tandaechanurat, S. Iwamoto, and Y. Arakawa  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21321-21332 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-Q photonic crystal (PC) microcavity for TM-like modes, which can be applied to quantum cascade lasers (QCLs), was successfully designed in an air-hole based PC slab with semiconductor cladding layers. In spite of no photonic badgaps for TM-like modes in air-hole based PC slabs, cavity Q reached up to 2,200 by utilizing a graded square lattice PC structure. This is ~18 times higher than those previously reported for PC defect-mode microcavities for QCLs. This large improvement is attributed to a suppression of the coupling between the cavity mode and the leaky modes thanks to the dielectric perturbation in the graded structure. We also predicted a dramatic reduction of the threshold current in the designed cavity down to one-fifteenth of that of a conventional QCL, due to a decreased optical volume.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 29, 2008
Revised Manuscript: December 1, 2008
Manuscript Accepted: December 5, 2008
Published: December 10, 2008

Y. Wakayama, A. Tandaechanurat, S. Iwamoto, and Y. Arakawa, "Design of high-Q photonic crystal microcavities with a graded square lattice for application to quantum cascade lasers," Opt. Express 16, 21321-21332 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90141114 (2007). [CrossRef]
  3. S. Hofling, J. Seufert, J. P. Reithmaier, and A. Forchel, "Room temperature operation of ultra-short quantum cascade lasers with deeply etched Bragg mirrors," Electron. Lett. 41, 704-705 (2005). [CrossRef]
  4. J. Heinrich, R. Langhans, J. Seufert, S. Hofling, and A. Forchel, "Quantum cascade microlasers with two-dimensional photonic crystal reflectors," IEEE Photon. Technol. Lett. 19, 1937-1939 (2007). [CrossRef]
  5. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003). [CrossRef] [PubMed]
  6. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  8. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  9. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006). [CrossRef] [PubMed]
  10. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  11. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, "Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 87, 061107 (2005). [CrossRef]
  12. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114 (2006). [CrossRef]
  13. P. Ma, F. Robin, H. Jackel, "Realistic photonic bandgap structures for TM-polarized light for all-optical switching," Opt. Express 14, 12794-12802 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12794. [CrossRef] [PubMed]
  14. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-5948. [CrossRef] [PubMed]
  15. M. Loncar, B. G. Lee, L. Diehl, M. Belkin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007), [CrossRef] [PubMed]
  16. http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499. [PubMed]
  17. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670. [CrossRef]
  18. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  19. L. Martiardonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. D. Vittorio, R. Cingolani, and Y. Arakawa, "Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals," Nano Lett. 8, 260-264 (2008). [CrossRef]
  20. O. Painter, K. Srinivasan, and P. E. Barclay, "Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals," Phys. Rev. B 68,035214 (2003). [CrossRef]
  21. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, "300 K operation of a GaAs-based quantum-cascade laser at lambda approximate to 9μm," Appl. Phys. Lett. 78, 3529-3531 (2001). [CrossRef] [PubMed]
  22. K. Srinivasan and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-6-579. [CrossRef]
  23. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966). [CrossRef] [PubMed]
  24. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, "Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness," Opt. Express 16,448-455, (2008), http://oe.osa.org/abstract.cfm?URI=oe-16-1-448. [CrossRef]
  25. T. Herrle, S. Haneder, and W. Wegscheider, "Role of excited states for the material gain and threshold current density in quantum wire intersubband laser structures," Phys. Rev. B 73,205328 (2006). [CrossRef]
  26. S. Chakravarty, P. Bhattacharya, J. Topol'ancik, and Z. Wu, "Electrically injected quantum dot photonic crystal microcavity light emitters and microcavity arrays," J. Phys. D Appl. Phys. 40, 2683-2690 (2007).
  27. E. M. Purcell, "Spontaneous Emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited