OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21801–21806

Optical waveguide enhanced photovoltaics

Sven Rühle, Shlomit Greenwald, Elad Koren, and Arie Zaban  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21801-21806 (2008)
http://dx.doi.org/10.1364/OE.16.021801


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhanced light to electric power conversion efficiency of photovoltaic cells with a low absorbance was achieved using waveguide integration. We present a proof of concept using a very thin dye-sensitized solar cell which absorbed only a small fraction of the light at normal incidence. The glass substrate in conjunction with the solar cells reflecting back contact formed a planar waveguide, which lead to more than four times higher conversion efficiency compared to conventional illumination at normal incidence. This illumination concept leads to a new type of multi-junction PV systems based on enforced spectral splitting along the waveguide.

© 2008 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(310.2785) Thin films : Guided wave applications

History
Original Manuscript: August 14, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 12, 2008
Published: December 17, 2008

Virtual Issues
Optics for Energy (2008) Optics Express

Citation
Sven Rühle, Shlomit Greenwald, Elad Koren, and Arie Zaban, "Optical Waveguide Enhanced Photovoltaics," Opt. Express 16, 21801-21806 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001). [CrossRef]
  2. D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008). [CrossRef]
  3. M. Grätzel, "Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells," C. R. Chimie 9, 578-583 (2006). [CrossRef]
  4. F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007). [CrossRef]
  5. F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007). [CrossRef]
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995). [CrossRef]
  7. H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006). [CrossRef]
  8. C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005). [CrossRef]
  9. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987). [CrossRef]
  10. Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007). [CrossRef]
  11. T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001). [CrossRef]
  12. H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007). [CrossRef]
  13. B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006). [CrossRef]
  14. M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008). [CrossRef] [PubMed]
  15. H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996). [CrossRef]
  16. H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998). [CrossRef]
  17. B. J. Soller, H. R. Stuart, and D. G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001). [CrossRef]
  18. H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998). [CrossRef]
  19. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007). [CrossRef]
  20. N. C. Panoiu and J. R. M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007). [CrossRef] [PubMed]
  21. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited