OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21807–21820

Optical properties of microalgae for enhanced biofuels production

Mautusi Mitra and Anastasios Melis  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21807-21820 (2008)
http://dx.doi.org/10.1364/OE.16.021807


View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Research seeks to alter the optical characteristics of microalgae in order to improve solar-to-biofuels energy conversion efficiency in mass culture under bright sunlight conditions. This objective is achieved by genetically truncating the size of the light-harvesting chlorophyll arrays that serve to absorb sunlight in the photosynthetic apparatus.

© 2008 Optical Society of America

OCIS Codes
(000.4920) General : Other life sciences
(350.5130) Other areas of optics : Photochemistry

History
Original Manuscript: September 15, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 13, 2008
Published: December 17, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics
Optics for Energy (2008) Optics Express

Citation
Mautusi Mitra and Anastasios Melis, "Optical properties of microalgae for enhanced biofuels production," Opt. Express 16, 21807-21820 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Ley and D. Mauzerall, "Absolute absorption cross section of photosystem-II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris," Biochim Biophys Acta 680, 95-106(1982). [CrossRef]
  2. A. Melis, J. Neidhardt, and J. R. Benemann, "Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells," J. Appl. Phycol. 10, 515-52 (1999). [CrossRef]
  3. Y. K. Lee, "Commercial production of microalgae in the Asia-Pacific rim," J Appl. Phycol. 9, 403-411 (1997). [CrossRef]
  4. A. Ben-Amotz and M. Avron, "The biotechnology of cultivating the halotolerant alga Dunalilella," TIBTECH 8,121-126 (1990). [CrossRef]
  5. A. Melis, "Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins," in Oxygenic Photosynthesis: The Light Reactions, D.R. Ort, C.F. Yocum, eds (Kluwer Academic Publishers, Dordrecht, Netherlands, 1996), 523-538
  6. S. Powles, "Photoinhibition of photosynthesis induced by visible light," Ann. Rev. Plant Physiol. 35, 15-44 (1984). [CrossRef]
  7. A. Melis, "Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?," Trends Plant Sci. 4, 130-135 (1999). [CrossRef] [PubMed]
  8. J. Naus and A. Melis, "Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures," Plant Cell Physiol. 32, 569-575 (1991).
  9. J. Neidhardt, J. R. Benemann, L. Zhang, and A. Melis, "Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae)," Photosynth. Res. 56, 175-184 (1998). [CrossRef]
  10. B. Kok, "Experiments on photosynthesis by Chlorella in flashing light," in: Algal Culture: from laboratory to pilot plant, J. S. Burlew ed. (Carnegie Inst. of Washington, Washington DC, 1953), 63-75.
  11. J. Myers, "Algal culture," in Encyclopedia of chemical technology, R.E. Kirk, D.E. Othmer eds. (Interscience, New York, 1957), 649-668.
  12. R. Radmer and B. Kok, "Photosynthesis: Limited yields, unlimited dreams," BioScience 29, 599-605 (1977). [CrossRef]
  13. R. E. Glick and A. Melis, "Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts," Biochim. Biophys. Acta 934, 151-155 (1988). [CrossRef]
  14. L. N. M. Duysens, J. Amsez J, and B. M. Kamp, "Two photochemical systems in photosynthesis," Nature 190, 510-511 (1961). [CrossRef] [PubMed]
  15. R. Emerson and W. Arnold, "A separation of the reactions in photosynthesis by means of intermittent light," J Gen. Physiol. 15, 391-420 (1932a). [CrossRef] [PubMed]
  16. R. Emerson and W. Arnold, "The photochemical reactions in photosynthesis," J Gen. Physiol. 16, 191-205 (1932b). [CrossRef] [PubMed]
  17. H. Gaffron and K. Wohl, "Zur theorie der assimilation," Naturwissenschaften 24, 81-90 (1936). [CrossRef]
  18. D. J. Simpson and J. Knoetzel, "Light-harvesting complexes of plants and algae: introduction, survey and nomenclature," in Oxygenic Photosynthesis: The Light Reactions, D.R. Ort and C.F.Yocum eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), 493-506.
  19. E. Pichersky and S. Jansson, "The light-harvesting chlorophyll a/b-binding polypeptides and their genes in angiosperm and gymnosperm species" In Oxygenic Photosynthesis: The Light Reactions, D.R. Ort and C.F.Yocum eds.(Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), 507-521.
  20. A. Melis, "Dynamics of photosynthetic membrane composition and function," Biochim. Biophys. Acta 1058, 87-106 (1991). [CrossRef]
  21. S. Jansson, E. Pichersky, R. Bassi, B. R. Green, M. Ikeuchi, A. Melis, D. J. Simpson, M. Spangfort, L. A. Staehelin, and J. P. Thornber, "A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants," Plant Mol. Biol. Rep. 10, 242-253 (1992). [CrossRef]
  22. D. Elrad, and A. R. Grossman, "A genome's-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii," Curr. Genetics 45, 61-75 (2004). [CrossRef]
  23. D. P. Maxwell, S. Falk S, and N. P. A. Huner, "Photosystem II excitation pressure and development of resistance to photoinhibition (1. Light harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris)," Plant Physiol. 107, 687-694 (1995). [PubMed]
  24. M. R. Webb and A. Melis, "Chloroplast response in Dunaliella salina to irradiance stress. Effect on thylakoid membrane assembly and function," Plant Physiol. 107, 885-893 (1995). [PubMed]
  25. A. Tanaka and A. Melis, "Irradiance-dependent changes in the size and composition of the chlorophyll a-b light-harvesting complex in the green alga Dunaliella salina," Plant Cell Physiol. 38, 17-24 (1997).
  26. J. M. Anderson, "Photoregulation of the composition, function and structure of thylakoid membranes," Ann. Rev. Plant Physiol. 37, 93-136 (1986). [CrossRef]
  27. E. Nakada, Y. Asada, T. Arai, and J. Miyake, "Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production," J Ferment.Bioengin. 80, 53-57 (1995). [CrossRef]
  28. A. G. Yakovlev, A. S. Taisova, and Z. G. Fetisova, "Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis," FEBS Lett. 512, 129-132 (2002). [CrossRef] [PubMed]
  29. T. Masuda, A. Tanaka, and A. Melis, "Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression," Plant Mol. Biol. 51, 757-771 (2003). [CrossRef] [PubMed]
  30. J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems (2nd ed. Cambridge University Press, Cambridge, England, 1994). [CrossRef]
  31. Y. Nakajima and R. Ueda, "Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments," J Appl. Phycol. 9, 503-510 (1997).
  32. Y. Nakajima and R. Ueda, "Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment," J Appl. Phycol. 11, 195-201 (1999). [CrossRef]
  33. J. E. W. Polle, S. Kanakagiri, and A. Melis, "tla1, a DNA insertional transformant of the antenna size," Planta 217, 49-59 (2003). [PubMed]
  34. K. L. Kindl, "High-frequency nuclear transformation of Chlamydomonas reinhardtii," Proc. Natl. Acad. Sci. USA 87, 1228-1232 (1990).N. J. Gumpel and S. Purton, "Playing tag with Chlamydomonas," Trends Cell Biol. 4, 299-301 (1994). [CrossRef]
  35. R. Vazquezduhal, "Light-effect on neutral lipids accumulation and biomass composition of Botryococcus sudeticus (Chlorophyceae)," Cryptogamie Algologie 12, 109-119 (1991).
  36. L. M. Brownand and K. G. Zeiler, "Aquatic biomass and carbon dioxide trapping;" Energy Conversion and Management 34, 1005-1013 (1993). [CrossRef]
  37. R. Westermeier and I. Gomez, "Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuin, south Chile," Botanica Marina 39, 553-559 (1996). [CrossRef]
  38. O. R. Zaborsky, BioHydrogen (Plenum Publishing Corporation, New York, 1998).
  39. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert, "Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii," Plant Physiol. 122, 127-136 (2000). [CrossRef] [PubMed]
  40. L. Zhang, T. Happe, and A. Melis, "Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga)," Planta 214, 552-561 (2002). [CrossRef] [PubMed]
  41. J. A. Mulloney, "Mitigation of carbon dioxide releases from power production via sustainable agri-power - the synergistic combination of controlled environmental agriculture (large commercial greenhouses) and disbursed fuel cell," Energy Conversion and Management 34, 913-920 (1993). [CrossRef]
  42. N. Nakicenovic, "Carbon dioxide mitigation measures and options," Environ. Sci. Technol. 27, 1986-1989 (1993). [CrossRef]
  43. A. Tanaka, H. Ito, R. Tanaka, N. Tanaka, K. Yoshida, and K. Okada, "Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a," Proc. Natl. Acad. Sci. USA 95, 12719-12723 (1998). [CrossRef]
  44. J. E. W. Polle, J. R. Benemann, A. Tanaka, and A. Melis, "Photosynthetic apparatus organization and function in wild type and a Chl b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source," Planta 211, 335-344 (2000). [CrossRef] [PubMed]
  45. T. Masuda, J. E. W. Polle, and A. Melis, "Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga Dunaliella salina from irradiance stress," Plant Physiol. 128, 603-614 (2002). [CrossRef] [PubMed]
  46. K. K. Niyogi, O. Björkman, and GrossmanAR , "Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching," Plant Cell 9, 1369-1380 (1997). [CrossRef] [PubMed]
  47. J. E. W. Polle, K. K. Niyogi, and A. Melis, "Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii," Plant Cell Physiol. 42, 482-491 (2001). [CrossRef] [PubMed]
  48. O. Bjorkman, N. K. Boardman, J. M. Anderson, S. W. Thorne, D. J. Goodchild, and N. A. Puliotis, "Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure," Carnegie Institution Yearbook 71,115-135 (1972).
  49. S. Tetali, M. Mitra, and A. Melis, "A Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene," Planta 225,813-829. (2007). [CrossRef]
  50. A. Zouni, H.T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, "Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution," Nature 409, 739-743(2001). [CrossRef] [PubMed]
  51. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, and N. Krauss, "Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution;" Nature 411909-917 (2001). [CrossRef] [PubMed]
  52. A. Sukenik, J. Bennett, and P. G. Falkowski, "Changes in the abundance of individual apoproteins of light-harvesting chlorophyll a/b-protein complexes of photosystem I and II with growth irradiance in the marine chlorophyte," Dunaliella tertiolecta.Biochim. Biophys. Acta 932, 206-215 (1988). [CrossRef]
  53. A.V. Ruban, M. Wentworth, A.E. Yakushevska, J. Andersson, P. J. Lee, W. Keegstra, J. P. Dekker, E. J. Boekema, S. Jansson, and P. Horton, "Plants lacking the main light-harvesting complex retain photosystem II macro-organization," Nature 421, 648-652 (2003). [CrossRef] [PubMed]
  54. J. H. Mussgnug, S. Thomas-Hall, J. Rupprecht, A. Foo, V. Klassen, A. McDowall,P. M. Schenk, O. Kruse, and B. Hankamer, "Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion," Plant Biotech. J. 5, 802- 814 (2007). [CrossRef]
  55. M. H. Huesemann, T. S. Hausmann, R. Bartha, M. Aksoy, J. C. Weissman, and J. R. Benemann, "Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)," Appl.Biochem.Biotechnol DOI 10.1007/s12010-008-8298-9 (2008).
  56. J. H. Mussgnug, L. Wobbe, I. Elles, C. Claus, M. Hamilton, A. Fink, U. Kahmann, A. Kapazoglou, C. W. Mullineaux, M. Hippler, J. Nickelsen, P. J. Nixon, and O. Kruse, "NAB1 Is an RNA Binding Protein Involved in the Light-Regulated Differential Expression of the Light-Harvesting Antenna of Chlamydomonas reinhardtii,"Plant Cell 17, 3409-3421 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited