OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1632–1644

Design of photonic crystal microcavities in diamond films

Christine Kreuzer, Janine Riedrich-Möller, Elke Neu, and Christoph Becher  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1632-1644 (2008)
http://dx.doi.org/10.1364/OE.16.001632


View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design photonic crystal microcavities in diamond films for applications in quantum information. Optimization of the cavity design by “gentle confinement” yields a high quality factor Q>66000 and small mode volume V≈1.1(λ/n)3. In view of experimental applications we consider the influence of material absorption on the cavity Q factors and present a simple interpretation in the framework of a one-dimensional cavity model.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Photonic Crystals

History
Original Manuscript: December 18, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: January 18, 2008
Published: January 23, 2008

Citation
Christine Kreuzer, Janine Riedrich-Möller, Elke Neu, and Christoph Becher, "Design of Photonic Crystal Microcavities in Diamond Films," Opt. Express 16, 1632-1644 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1632


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Wrachtrup and F. Jelezko, "Processing quantum information in diamond," J. Phys.: Condens. Matter 18, S807- S824 (2006). [CrossRef]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
  3. R. Brouri, A. Beveratos, J.-Ph. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett. 25, 1294-1296 (2000). [CrossRef]
  4. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett. 92, 076401 (2004). [CrossRef] [PubMed]
  5. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004). [CrossRef] [PubMed]
  6. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, B.C. Gibson, S. Rubanov, D. N. Jamieson, and S. Prawer, "Coherent population trapping in diamond N-V centers at zero magnetic field," Opt. Express 14, 7986-7994 (2006). [CrossRef] [PubMed]
  7. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Berlin: Springer, 2001).
  8. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, "Stable single-photon source in the near infrared," New J. Phys. 6, 98 (2004). [CrossRef]
  9. J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, "Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition," Appl. Phys. Lett. 86, 131926 (2005). [CrossRef]
  10. E. Wu, V. Jacques, F. Treussart, H. Zeng, P. Grangier, and J.-F. Roch, "Single-photon emission in the near infrared from diamond colour centre," J. Lumin. 119-120, 19-23 (2006). [CrossRef]
  11. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, "Single photon emission from SiV centres in diamond produced by ion implantation," J. Phys. B: At. Mol. Opt. Phys. 39, 37-41 (2006). [CrossRef]
  12. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, "Fault-tolerant quantum communication based on solid-state photon emitters," Phys. Rev. Lett. 96, 070504 (2006). [CrossRef] [PubMed]
  13. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q-switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A 73, 013818 (2006). [CrossRef]
  14. Y. L. Lim, A. Beige, and L. C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett. 95, 030505 (2005). [CrossRef] [PubMed]
  15. Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek, "Repeat-until-success quantum computing using stationary and flying qubits," Phys. Rev. A 73, 012304 (2006). [CrossRef]
  16. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, "Quantum phase transitions of light," Nat. Phys. 2, 856-861 (2006). [CrossRef]
  17. J. Vuickovic, M . Lonicar, H . Mabuchi, and A . Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  18. A.V. Turukhin, C.-H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, "Picosecond photoluminescence decay of Si-doped chemical-vapor-deposited diamond films," Phys. Rev. B 54, 16448-16451 (1996). [CrossRef]
  19. A. D. Greentree, P. Olivero, M. Draganski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, "Critical components for diamond-based quantum coherent devices," J. Phys.: Condens. Matter 18, S825-S842 (2006). [CrossRef]
  20. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  21. I. Bayn and J. Salzman, "High-Q photonic crystal nanocavities on diamond for quantum electrodynamics," Eur. Phys. J. Appl. Phys. 37, 19-24 (2007). [CrossRef]
  22. C. F. Wang, Y-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, "Observation of whispering gallery modes in nanocrystalline diamond microdisks," Appl. Phys. Lett. 90, 081110 (2007). [CrossRef]
  23. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  24. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef] [PubMed]
  25. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 131202-1214 (2005). [CrossRef] [PubMed]
  26. P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, and D. Steinmuller, "Optical properties of nanocrystalline diamond thin films," Appl. Phys. Lett. 88, 101908 (2006). [CrossRef]
  27. J. P. Reithmaier, G. Se¸ k, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature (London) 432, 197-200 (2004). [CrossRef] [PubMed]
  28. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature (London) 432, 200-203 (2004). [CrossRef] [PubMed]
  29. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  30. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  31. Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004). [CrossRef] [PubMed]
  32. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Maters. 4, 207-210 (2005). [CrossRef]
  33. D. Englund, I. Fushman, and J. Vuickoviic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  34. D. Englund and J. Vuickovic, "A direct analysis of photonic nanostructures," Opt. Express 14, 3472-3483 (2006). [CrossRef] [PubMed]
  35. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  36. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  37. I. Alvarado-Rodriguez and E. Yablonovitch, "Separation of radiation and absorption losses in two-dimensional photonic crystal single defect cavities," J. Appl. Phys. 92, 6399-6401 (2002). [CrossRef]
  38. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  39. T. Xu, S. Yang, S. Selvakumar, V. Nair, and H.E. Ruda, "Nanowire-array-based photonic crystal cavity by finitedifference time-domain calculations," Phys. Rev. B 75, 125104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited