OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1692–1703

Reconstruction of the Optical System of the Human Eye with Reverse Ray-Tracing

Alexander V. Goncharov, Maciej Nowakowski, Matthew T. Sheehan, and Christopher Dainty  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1692-1703 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a practical method for reconstructing the optical system of the human eye from off-axis wavefront measurements. A retinal beacon formed at different locations on the retina allows probing the optical structure of the eye by the outgoing beams that exit the eye through the dilated pupil. A Shack-Hartmann aberrometer measures the amount of wave aberrations in each beam at the exit pupil plane. Wavefront data obtained at different oblique directions is used for tomographic reconstruction by optimizing a generic eye model with reverse ray-tracing. The multi-configuration system is constructed by tracing pre-aberrated beams backwards from each direction through the exit pupil into the optical system of the aberrometer followed by the generic eye model. Matching all wave aberrations measured at each field point is equivalent to minimizing the size of the beacon spots on the retina. The main benefit of having a personalized eye model is the ability to identify the origin of the ocular aberrations and to find the optimal way for their correction.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(080.1010) Geometric optics : Aberrations (global)
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: October 19, 2007
Revised Manuscript: January 15, 2008
Manuscript Accepted: January 21, 2008
Published: January 24, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Alexander V. Goncharov, Maciej Nowakowski, Matthew T. Sheehan, and Christopher Dainty, "Reconstruction of the optical system of the human eye with reverse ray-tracing," Opt. Express 16, 1692-1703 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999). [PubMed]
  2. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000). [PubMed]
  3. J. Stone, P. H. Hu, S. P. Mills, and S. Ma, "Anisoplanatic effects in finite-aperture optical systems," J. Opt. Soc. Am. A 11, 347-357 (1994). [CrossRef] [PubMed]
  4. M. Di Jorio, "The general theory of isoplanatism for finite aperture and field," J. Opt. Soc. Am. 39, 305-319 (1949). [CrossRef] [PubMed]
  5. A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007). [CrossRef] [PubMed]
  6. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, "Comparison of curvature-based and Shack Hartmann-based adaptive optics for the Gemini telescope," Appl. Opt. 36, 2856-2868 (1997). [CrossRef] [PubMed]
  7. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Opt. Lett. 29, 2743-2745 (2004). [CrossRef] [PubMed]
  8. A. V. Goncharov, J. C. Dainty, and S. Esposito, "Compact multireference wavefront sensor design," Opt. Lett. 30, 2721-2723 (2005). [CrossRef] [PubMed]
  9. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, "Use of a Shack-Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum," Opt. Lett. 20, 2460-2462 (1995). [CrossRef] [PubMed]
  10. T. M. Jeong, M. Menon, and G. Yoon, "Measurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor," Appl. Opt. 44, 4523-4527 (2005). [CrossRef] [PubMed]
  11. J. -S. Lee, H. -S. Yang, and J. -W. Hahn, "Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source," Appl. Opt. 46, 1411-1415 (2007). [CrossRef] [PubMed]
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef] [PubMed]
  13. T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998). [CrossRef] [PubMed]
  14. R. G. Lane and M. Tallon, "Wavefront reconstruction using a Shack-Hartmann sensor," Appl. Opt. 31, 6902-6908 (1992). [CrossRef] [PubMed]
  15. R. C. Cannon, "Global wave-front reconstruction using Shack-Hartmann sensors," J. Opt. Soc. Am. A 12, 2031-2039 (1995). [CrossRef] [PubMed]
  16. M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, "Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field," Opt. Express 15, 7367-7380 (2007). [CrossRef] [PubMed]
  17. J. Lee, R. V. Shack, and M. R. Descour, "Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor," Appl. Opt. 44, 4838-4845 (2005). [CrossRef] [PubMed]
  18. R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized eye models," Optom. Vision Sci. 83, 371-381 (2006). [CrossRef] [PubMed]
  19. M. Ye, X. X. Zhang, L. N. Thibos, and A. Bradley,"A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 34, 777 (1993). [PubMed]
  20. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971). [CrossRef] [PubMed]
  21. A. C. Kooijman, "Light distribution on the retina of a wide-angle theoretical eye," J. Opt. Soc. Am. 73, 1544-1550 (1983).
  22. J. W. Blaker, "Toward an adaptive model of the human eye," J. Opt. Soc. Am. 70, 220-223 (1980). [CrossRef] [PubMed]
  23. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  24. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999). [CrossRef] [PubMed]
  25. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992). [CrossRef] [PubMed]
  26. I. H. Al-Ahdali and M. A. El-Messiery, "Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model," Appl. Opt. 34, 5738-5745 (1995). [CrossRef] [PubMed]
  27. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef] [PubMed]
  28. S. Barbero, "Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film," J. Opt. Soc. Am. A 23, 1578-1585 (2006). [CrossRef]
  29. J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, "Inverse optical design of the human eye using likelihood methods and wavefront sensing," Opt. Express 16, 304-314 (2008). [CrossRef] [PubMed]
  30. L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vis. Sci. 82, 298-306 (2005). [CrossRef] [PubMed]
  31. R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006). [CrossRef] [PubMed]
  32. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations," J. Vision. 4, 288 (2004), http://journalofvision.org/4/4/5/. [CrossRef] [PubMed]
  33. L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24, 2783-2796 (2007). [CrossRef] [PubMed]
  34. B. Pierscionek, R. J. Green, and S. G. Dolgobrodov, "Retinal images seen through a cataractous lens modeled as a phase-aberrating screen," J. Opt. Soc. Am. A 19, 1491-1500 (2002). [CrossRef] [PubMed]
  35. R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007). [CrossRef]
  36. A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov"Anisoplanatism in adaptive compensation of human eye aberrations," in Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein eds., Proc SPIE 5572, 330-339 (2004). [CrossRef]
  37. J. Tabernero, A. Benito, E. Alcón, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A 24, 3274-3283 (2007). [CrossRef]
  38. S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003). [CrossRef]
  39. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006). [CrossRef] [PubMed]
  40. B. Tan, Y. -L. Chen, K. Baker, J. W. Lewis, T. Swartz, Y. Jiang, and M. Wang, "Simulation of realistic retinoscopic measurement," Opt. Express 15, 2753-2761 (2007). [CrossRef] [PubMed]
  41. A. Roorda, M. C. W. Campbell, and W. R. Bobier, "Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye," J. Opt. Soc. Am. A 12, 1647-1656 (1995). [CrossRef] [PubMed]
  42. Y. -L. Chen, B. Tan, and J. Lewis, "Simulation of eccentric photorefraction images," Opt. Express 11, 1628-1642 (2003). [CrossRef] [PubMed]
  43. P. A. Piers, N. E. Sverker Norrby, and U. Mester, "Eye models for the prediction of contrast vision in patients with new intraocular lens designs," Opt. Lett. 29, 733-735 (2004). [CrossRef] [PubMed]
  44. J. Tabernero, P. Piers, and P. Artal, "Intraocular lens to correct corneal coma," Opt. Lett. 32, 406-408 (2007). [CrossRef] [PubMed]
  45. D. A. Atchison, "Aberrations associated with rigid contact lenses," J. Opt. Soc. Am. A 12, 2267-2273 (1995). [CrossRef] [PubMed]
  46. H. H. Dietze and M. J. Cox, "Correcting ocular spherical aberration with soft contact lenses," J. Opt. Soc. Am. A 21, 473-485 (2004). [CrossRef] [PubMed]
  47. D. Vazquez, E. Acosta, G. Smith, and L. Garner, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens," J. Opt. Soc. Am. A 23, 2551-2565 (2006). [CrossRef]
  48. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Aged-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance microimaging in vitro," Vision Res. 42, 1683-1693 (2002). [CrossRef] [PubMed]
  49. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bara, "Contrast improvement of confocal retinal imaging by use of phase-correcting plates," Opt. Lett. 27, 400-402 (2002). [CrossRef]
  50. J. Arines and S. Bara, "Hybrid technique for high resolution imaging of the eye fundus," Opt. Express 11, 761-766 (2003). [CrossRef] [PubMed]
  51. J. M. Bueno, J. J. Hunter, C. J. Cookson, M. L. Kisilak, and M. C. W. Campbell, "Improved scanning laser fundus imaging using polarimetry," J. Opt. Soc. Am. A 24, 1337-1348 (2007). [CrossRef]
  52. L. E. Marchese, R. Munger, and D. Priest, "Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?," J. Opt. Soc. Am. A 22, 1471-1481 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited