OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1820–1835

Multiple-multipole simulation of optical near-fields in discrete metal nanosphere assemblies

Wei-Yin Chien and Thomas Szkopek  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1820-1835 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied a multiple-multipole method to calculate the field enhancement of discrete metal nanosphere assemblies due to plasma resonance, thus performing the first full electromagnetic simulation of a variety of nanoparticle assemblies for efficient field focusing, including the self-similar geometric series of spheres first proposed by Li, Stockman and Bergman. Our study captures electromagnetic resonance effects important for optimizing nanoparticle assemblies to achieve maximum electric field focusing. We predict optical frequency electric fields can be enhanced in gold nanoparticle assemblies in aqueous solution by the order of ~450, within a factor of 2 of that achievable in silver nanostructures. We find that both absorption and far-field scattering resonances of nanoparticle assemblies must be carefully interpreted when inferring near-field focusing properties.

© 2008 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: December 12, 2007
Revised Manuscript: January 23, 2008
Manuscript Accepted: January 24, 2008
Published: January 25, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Wei-Yin Chien and Thomas Szkopek, "Multiple-multipole simulation of optical nearfields in discrete metal nanosphere assemblies," Opt. Express 16, 1820-1835 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics (University Press, Cambridge, 2006).
  2. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006). [CrossRef]
  3. L. A. Sweatlock, S. A. Maier, and H. A. Atwater, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005). [CrossRef]
  4. K. Li. and M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  5. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  6. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003). [CrossRef]
  7. B. M. Reinhard, M. Siu, H. Argarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005). [CrossRef] [PubMed]
  8. F. Aldaye and H. F. Sleiman, "Dynamic DNA templates for discrete gold nanoparticles assemblies: Control of geometry, modularity, write/erase and structural switching," J. Am. Chem. Soc. 129, 4130-4131 (2007). [CrossRef] [PubMed]
  9. Y. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  10. D. W. Mackowski, "Analysis of radiative scattering for multiple sphere configurations," Proc. R. Soc. London Ser. A 433, 599-614 (1991). [CrossRef]
  11. J. H. Bruning and Y. T. Lo, "Multiple scattering of EM waves by spheres Part I - Multipole Expansion and Ray-Optical Solutions," IEEE Tran.Antennas Propag. AP-19, 378-390 (1971). [CrossRef]
  12. Y. Xu, "Calculation of the addition coefficients in electromagnetic multisphere-scattering theory," J. Comput. Phys. 127, 285-298 (1996). [CrossRef]
  13. F. J. Garcia de Abajo, "Multiple scattering of radiation in clusters of dielectrics," Phys. Rev. B 60, 6086-6102 (1999). [CrossRef]
  14. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C 27, 1347-1350 (2007). [CrossRef]
  15. H. Xu, "Calculation of the near field of aggregates of arbitrary spheres," J. Opt. Soc. Am. A 21, 804-809 (2004). [CrossRef]
  16. R.-L. Chern, X.-X. Liu and C.-C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Phys. Rev. E 76, 016609 (2007). [CrossRef]
  17. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches," Nanotechnology 17, 1437-1445 (2006). [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th. ed., (Academic, Orlando, 2005).
  21. D. W. Mackowski, "Calculation of total cross sections of multiple-sphere clusters," J. Opt. Soc. Am. A 11, 2851-2861 (1994). [CrossRef]
  22. A. R. Edmond, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
  23. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  25. F. Wang and Y. Ron Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006). [CrossRef] [PubMed]
  26. I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129-135 (2006). [CrossRef]
  27. E. Prodan, C. Radloff, N. J. Halas and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419 - 422 (2003). [CrossRef] [PubMed]
  28. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  29. B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited