OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1836–1845

Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

Mark C. Phillips and Nicolas Hô  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1836-1845 (2008)
http://dx.doi.org/10.1364/OE.16.001836


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable midinfrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30–10.15 µm). Hypercubes containing images at 300 wavelengths separated by 0.3 cm-1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

© 2008 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6340) Spectroscopy : Spectroscopy, infrared
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Imaging Systems

History
Original Manuscript: December 14, 2007
Revised Manuscript: January 18, 2008
Manuscript Accepted: January 18, 2008
Published: January 25, 2008

Citation
Mark C. Phillips and Nicolas Ho, "Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array," Opt. Express 16, 1836-1845 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1836


Sort:  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous wave operation of a mid-infrared semiconductor laser at room temperature," Science 295, 301-305 (2002). [CrossRef] [PubMed]
  3. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004). [CrossRef]
  4. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001). [CrossRef]
  5. X. J. Wang, J. Y. Fan, T. Tanbun-Ek, and F. S. Choa, "Low threshold quantum-cascade lasers of room temperature continuous-wave operation grown by metal-organic chemical-vapor deposition," Appl. Phys. Lett. 90, 211103 (2007). [CrossRef]
  6. A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007). [CrossRef]
  7. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006). [CrossRef]
  8. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006). [CrossRef]
  9. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C. H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001). [CrossRef]
  10. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Muller, "Mid-infrared external-cavity quantum-cascade laser," Opt. Lett. 27, 1788-1790 (2002). [CrossRef]
  11. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 mu m using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  12. M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007). [CrossRef] [PubMed]
  13. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc. Natl. Acad. Sci. USA 103, 10846-10849 (2006). [CrossRef] [PubMed]
  14. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005). [CrossRef]
  15. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mu m," Opt. Express 15, 7357-7366 (2007). [CrossRef] [PubMed]
  16. J. A. Bailey, R. B. Dyer, D. K. Graff, and J. R. Schoonover, "High Spatial Resolution for IR Imaging Using an IR Diode Laser," Appl. Spectrosc. 54, 159-163 (2000). [CrossRef]
  17. B. Guo, Y. Wang, C. Peng, G. P. Luo, and H. Q. Le, "Multi-wavelength mid-infrared micro-spectral imaging using semiconductor lasers," Appl. Spectrosc. 57, 811-822 (2003). [CrossRef] [PubMed]
  18. Y. Wang, C. Peng, H. L. Zhang, and H. Q. Le, "Wavelength modulation imaging with tunable mid-infrared semiconductor laser: spectroscopic and geometrical effects," Opt. Express 12, 5243-5257 (2004). [CrossRef] [PubMed]
  19. Y. Wang, Y. Wang, and H. Q. Le, "Multi-spectral mid-infrared laser stand-off imaging," Opt. Express 13, 6572-6586 (2005). [CrossRef] [PubMed]
  20. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Real-time imaging using a 4.3-THz quantum cascade laser and a 320 x 240 microbolometer focal-plane array," IEEE Photon. Technol. Lett. 18, 1415-1417 (2006). [CrossRef]
  21. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, "Fourier-Transform Spectroscopic Imaging Using an Infrared Focal-Plane Array Detector," Anal. Chem. 67, 3377-3381 (1995). [CrossRef] [PubMed]
  22. R. G. Messerschmidt and M. A. Harthcock, eds., Infrared microspectroscopy. Theory and applications (Marcel Dekker, New York, 1988).
  23. I. W. Levin and R. Bhargava, "Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition," Annu. Rev. Phys. Chem. 56, 429-474 (2005). [CrossRef] [PubMed]
  24. J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Mabry, M. G. Sivjee, and J. W. Skinner, "LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing," in SPIE Imaging Spectrometry II 102-107 (1996).
  25. P. G. Lucey, T. J. Williams, J. L. Hinrichs, M. E. Winter, D. Steutel, and E. M. Winter, "Three years of operation of AHI: the University of Hawaii's Airborne Hyperspectral Imager," in SPIE Infrared Technology and Applications XXVII 112-120 (2001).
  26. L. M. Miller and P. Dumas, "Chemical imaging of biological tissue with synchrotron infrared light," Biochem. Biphys. Acta 1758, 846-857 (2006). [CrossRef]
  27. J. A. Reffner, P. A. Martoglio, and G. P. Williams, "Fourier-Transform Infrared Microscopic Analysis with Synchrotron-Radiation - the Microscope Optics and System Performance," Rev. Sci. Instrum. 66, 1298-1302 (1995). [CrossRef]
  28. B. J. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, "Laser-based mid-infrared reflectance imaging of biological tissues," Opt. Express 12, 208-219 (2004). [CrossRef] [PubMed]
  29. T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, and R. N. Phillips, "Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS)," IEEE Trans. Geosci. Remote Sens. 37, 2019-2034 (1999). [CrossRef]
  30. M. C. Phillips, T. L. Myers, M. D. Wojcik, B. D. Cannon, M. S. Taubman, and D. C. Scott, "Measurement of broad absorption features using a tunable external cavity quantum cascade laser," in SPIE Infrared, Mid-IR, and Terahertz Technologies for Health and the Environment II676003-676011 (2007).
  31. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, "Gas-phase databases for quantitative infrared spectroscopy," Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1812 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited