OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2415–2422

Using direct nanoimprinting to study extraordinary transmission in textured metal films

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2415-2422 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we describe a thermal embossing imprint method, which we name “nano-imprinting in metal” (NIM), for patterning metal films with a variety of profiles. Metal films exhibiting either perforated hole-arrays or corrugated structures with various surface morphologies can be fabricated rapidly. The SPR phenomenon allowed energy coupling to the other side of the textured metal film, causing a dramatic increase in the transmission. As a technique for readily controlling the working wavelength and transmittance, the NIM method has great potential for application in various optoelectronic devices.

© 2008 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 27, 2007
Revised Manuscript: January 13, 2008
Manuscript Accepted: January 20, 2008
Published: February 5, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee, "Using direct nanoimprinting to study extraordinary transmission in textured metal films," Opt. Express 16, 2415-2422 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667 (2005). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  3. H. W. Gao, J. Henzie, T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104 (2006). [CrossRef] [PubMed]
  4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-5-482 [CrossRef] [PubMed]
  5. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595 (2005). [CrossRef]
  6. Z. M. Zhu, and T. G. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," J. Opt. Soc. Am. A 17, 1798 (2000). [CrossRef]
  7. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface lasmon polaritons," Phys. Rev. B 69, 245418 (2004). [CrossRef]
  8. B. F. Bai, L. F. Li, and L. J. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360 (2005). [CrossRef] [PubMed]
  9. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography," Microelectron. Eng. 83, 893 (2006). [CrossRef]
  10. M. T. Li, L. Chen, and S. Y. Chou, "Direct three-dimensional patterning using nanoimprint lithography," Appl. Phys. Lett. 78, 3322 (2001). [CrossRef]
  11. D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006). [CrossRef]
  12. T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, "Nanowire arrays defined by nanoimprint lithography," Nano Lett. 4, 699 (2004). [CrossRef]
  13. B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, "Crystallization of poly(ethylene oxide) patterned by nanoimprint lithography," Macromolecules 40, 2968 (2007). [CrossRef]
  14. V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, "Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons," Opt. Express 15, 7190 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7190. [CrossRef] [PubMed]
  15. H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).
  16. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," J. Opt. Commun. 200, 1 (2001). [CrossRef]
  17. H. A. Macleod, Thin Film Optical Filters, (Institute of Physics 2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited