OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2423–2430

Photonic microharp chemical sensors

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, R. Bass, J. B. Boos, J. L. Stepnowski, and R. A. McGill  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2423-2430 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (9811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new class of micro-opto-mechanical chemical sensors: A photonic microharp chemical sensor is an array of closely spaced microbridges, each differing slightly in length and coated with a different sorbent polymer. They are optically interrogated using microcavity interferometry and photothermal actuation, and are coupled directly to an optical fiber. Simultaneous measurements of the fundamental flexural resonant frequency of each microbridge allow the real-time detection and discrimination of a variety of vapor-phase analytes, including DMMP at concentrations as low as 17 ppb.

© 2008 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4685) Optical devices : Optical microelectromechanical devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: December 5, 2007
Revised Manuscript: January 28, 2008
Manuscript Accepted: January 28, 2008
Published: February 6, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, R. Bass, J. B. Boos, J. L. Stepnowski, and R. A. McGill, "Photonic microharp chemical sensors," Opt. Express 16, 2423-2430 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. McGill, M. H. Abraham, and J. W. Grate, "Choosing polymer-coatings for chemical sensors," Chemtech 24(9), 27-37 (1994).
  2. A. J. Ricco, R. M. Crooks, and G. C. Osbourn, "Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures," Acc. Chem. Res. 31, 289-296 (1998). [CrossRef]
  3. S. L. Rose-Pehrsson, J.W. Grate, D. S. Ballantine, and P. C. Jurs, "Detection of hazardous vapors including mixtures using pattern-recognition analysis of responses from surface acoustic-wave devices," Anal. Chem. 60(24), 2801-2811 (1988). [CrossRef] [PubMed]
  4. T. Thundat, E. A. Wachter, S. L. Sharp, and R. Warmack, "Detection of mercury-vapor using resonating microcantilevers," Appl. Phys. Lett. 66, 1695-1697 (1995). [CrossRef]
  5. N. Abedinov, C. Popov, Z. Yordanov, T. Ivanov, T. Gotszalk, P. Grabiec, W. Kulisch, I.W. Rangelow, D. Filenko, and Y. Shirshov, "Chemical recognition based on micromachined silicon cantilever array," J. Vac. Sci. Technol. B. 21(6), 2931-2936 (2003). [CrossRef]
  6. L. R. Senesac, P. Dutta, P. G. Datskos, and M. J. Sepaniak, "Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks," Analytica Chimica Acta 558, 94-101 (2006). [CrossRef]
  7. H. P. Lang, M. K. Baller, R. Berger, C. Gerber, J. K. Gimzewski, F. M. Battiston, P. Fornaro, J. P. Ramseyer, E. Meyer, and H. J. Güntherodt, "An artificial nose based on a micromechanical cantilever array," Analytica Chimica Acta 393, 59-65 (1999). [CrossRef]
  8. N. V. Lavrik and P. G. Datskos, "Femtogram mass detection using photothermally actuated nanomechanical resonators," Appl. Phys. Lett. 82, 2697-2699 (2003). [CrossRef]
  9. L. A. Pinnaduwage, V. Boiadjiev, J. E. Hawk, and T. Thundat, "Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers," Appl. Phys. Lett. 83(7), 1471-1473 (2003). [CrossRef]
  10. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science 288, 316-318 (2000). [CrossRef] [PubMed]
  11. T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, "Measurement of Thermal-Mechanical Noise in Microelectromechanical Systems," Appl. Phys. Lett. 81, 1779-1781 (2002). [CrossRef]
  12. E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, and S. L. Sharp, "Remote optical detection using microcantilevers," Rev. Sci. Instrum. 67(10), 3434-3439 (1996). [CrossRef]
  13. T. H. Stievater, W. S. Rabinovich, R. Mahon, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. Bass, R. A. McGill, and J. Stepnowski, "Remote All-Optical Detection of Chemical Vapors using Micromechanical Resonators," in Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference (DOD-DTRA, Arlington, VA, USA, 2007).
  14. D. W. Carr and H. G. Craighead, "Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography," vol.  15, pp. 2760-2763 (AVS, 1997).
  15. T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, "Microcavity Interferometry for MEMS Device Characterization," J. Microelectromech. Syst. 12, 109-116 (2003). [CrossRef]
  16. T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, "All-Optical Micromechanical Chemical Sensors," Appl. Phys. Lett. 89, 091,125 (2006). [CrossRef]
  17. T. B. Gabrielson, "Mechanical-thermal noise in micromachined acoustic and vibration sensors," IEEE Trans. Electron. Devices 40, 903-909 (1993). [CrossRef]
  18. T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, "Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors," Appl. Phys. Lett. 90(5), 051114 (pages 3) (2007). URL http://link.aip.org/link/?APL/90/051114/1. [CrossRef]
  19. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, "Progress in development of multiple-quantum-well retromodulators for free-space data links," Opt. Eng. 42, 1611-1617 (2003). [CrossRef]
  20. T. Veijola, "Compact models for squeezed-film dampers with inertial and rarefied gas effects," J. Micromech. Microeng. 14, 1109-1118 (2004). [CrossRef]
  21. "Linear and hyperbranched hydrogen bond acidic poly(silylene-methylene)s for chemical sensor applications," in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol. 225 of 316-PMSE Part 2 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited