OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2752–2763

Proposal for ultra-high performance infrared Quantum Dot

A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2752-2763 (2008)
http://dx.doi.org/10.1364/OE.16.002752


View Full Text Article

Enhanced HTML    Acrobat PDF (465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, effect of an introduced defect on electrical and optical properties of quantum box and spherical quantum dot is studied. 3Dself-consistent solution of the Schrödinger-Poisson equations for evaluation of the proposed complex quantum box and analytical solution for spherical quantum dot are used. It is shown that with increasing the defect size and height a considerable enhancement in matrix element, optical nonlinearities (second order, quadratic electro-optic effect and the resonant third order nonlinear susceptibilities), optical linear absorption coefficient (4.5–10 nm, 10−4~10−2 m.V−1, 10−12~10−9 m2/V2, 10−11~10−9 m2/V2 and 4.7×102~3.8×104 cm−1 respectively) and electroabsorption properties associated with intersublevel transition of centered defect quantum dot are examined. Also, it is shown that enhancement of optical nonlinearity is approximately independent of defect position that is so excellent from practical implementation point of view. A THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD) operating at room temperature is also investigated. Inserting the centered defect in quantum dot increases the dipole transition matrix element and so increases the absorption coefficient considerably (1.05×106~7.33×106 m−1 at 83 µm). Therefore the quantum efficiency in SCDQD structure enhances which leads to increasing the responsivity of the proposed system. The double barrier reduces the dark current. These improvements concludes to ultra high detectivity 5×1016 and 2.25×109 cmHz1/2/W at 83 and 300°K at 83 µm respectively.

© 2008 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(190.0190) Nonlinear optics : Nonlinear optics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: November 13, 2007
Revised Manuscript: January 20, 2008
Manuscript Accepted: January 28, 2008
Published: February 13, 2008

Citation
A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad, "Proposal for ultra-high performance infrared Quantum Dot," Opt. Express 16, 2752-2763 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Ghosh, S. , Lenihan, A.S. , Dutt, M.V.G. , Qasaimeh, O. , Steel, D.G. , and Bhattacharya, P.  (2001). Nonlinear Optical and Electro-optic Properties of InAs/GaAs Self-organized Quantum Dots. J. Vac. Sci. Technol. B 19, 1455-1458. [CrossRef]
  2. Rosencher, E. , Bois, P. , Nagle, J. , and Delaitre, S.  (1989). Second Harmonic Generation by Intersubband Transitions in Compositionally Asymmetrical MQWs. Electron. Lett. 25, 1063-1065. [CrossRef]
  3. S. Banerjee, K. A. Shore, "MIR and NIR Nonlinear Optical Processing using Intersubband x(3) in triple Quantum Well Structures," Inst. Phys. Publish. UK. 655-660l (2003).
  4. Brunhes, T. , Boucaud, P. , Sauvage, S. , Glotin, F. , Prazeres, R. , Ortega, J.-M. , Lemaitre, A. , and Gerard, J.-M.  (1999). Midinfrared Second-harmonic Generation in P-type InAs/GaAs Self-assembled Quantum Dots. Appl. Phys. Lett. 75, 835-837. [CrossRef]
  5. Liu, J. , Bai, Y. , and Xiong, G.  (2004). Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well. Physica E (Amsterdam) 23, 70-74. [CrossRef]
  6. S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, J. M. Gerard, "Second-harmonic Generation Resonant with S-P Transition in InAs/GaAs Self-assembled Quantum Dots," Phys. Rev. B 63, 113312_1-113312_4 (2001). [CrossRef]
  7. Berryman, K.W. , Lyon, S.A. , and Segev, M.  (1997). Mid-infrared photoconductivity in InAs quantum dots. Appl. Phys. Lett. 70, 1861-1863. [CrossRef]
  8. Liu, J.L. , Wu, W.G. , Balandin, A. , Jin, G.L. , and Wang, K.L.  (1999). Intersubband absorption in boron-doped multiple Ge quantum dots. Appl. Phys. Lett. 74, 185-187. [CrossRef]
  9. Zhang, X. , Xiong, G. , and Feng, X.  (2006). Well Width-dependent Third-order Optical Nonlinearities of a ZnS/CdSe Cylindrical Quantum Dot Quantum Well. Physica E (Amsterdam) 33, 120-124. [CrossRef]
  10. Ryzhii, V. , Khmyrova, I. , Ryzhii, M. , and Mitin, V.  (2004). Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors. Semicond. Sci. Technol. 19, 8-16. [CrossRef]
  11. Rostami, A. , and Rasooli Saghai, H.  (2007). A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD). Microelectron. J. 38, 342-351. [CrossRef]
  12. Rostami, A. , Rasooli Saghai, H. , and Baghban, H.  "A Proposal for Enhancement of Optical Nonlinearity in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal," Submitted to Solid state J. (2007).
  13. Rostami, A. , Rasooli Saghai, H. , and Baghban, H.  "A Proposal for Enhancement of Absorption Coefficient and Electroabsorption properties in GaN/AlGaN Centered Defect Quantum Box (CDQB) Nanocrystal," Submitted to Physica B J. (2007).
  14. Suzuki, N. , Iizuka, N. , and Kaneko, K.  (2005). "Simulation of Ultrafast GaN /AlN Intersubband Optical Switches," IEICE Trans. Electron.E 88-C, 342-348. [CrossRef]
  15. Asgari, A. , Kalafi, M. , and Faraone, L.  (2005). The Effects of GaN Capping Layer Thickness on Two-dimensional Electron Mobility in GaN/AlGaN/GaN Heterostructures. Physica E (Amsterdam) 25, 431-437. [CrossRef]
  16. Guo, K.X. , and Yu, Y.B.  (2005). Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots. Chin. J. Physiol. 43, 932-940.
  17. Liu, J. , Bai, Y. , and Xiong, G.  (2004). Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well. Physica E (Amsterdam) 23, 70-74. [CrossRef]
  18. Harrison, P. Quantum Wells, Wires and Dots (John Wiley, 2005). [CrossRef]
  19. Basu, P.K. Theory of Optical Processes in Semiconductors (Clarendon Press, Oxford, 1997).
  20. Barseghyan, M.G. , and Kirakosyan, A.A.  (2005). Light absorption by a two-dimensional quantum dot superlattice. Physica E (Amsterdam) 27, 474-480. [CrossRef]
  21. Peyghambarian, N. , Koch, S.W. , and Mysyrowicz, A.  Introduction to Semiconductor Optics, (Prentice Hall, 1993).
  22. Shen, Y.R. The Principles of Nonlinear Optics (John Wiley, 2003).
  23. Boyd, R.W. Nonlinear Optics (Academic Press, 1992).
  24. Kochman, B. , Stiff-Roberts, A.D. , Chakrabarti, S. , Phillips, J.D. , Krishna, S. , Singh, J. , and Bhattacharya, P.  (2003). Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors. IEEE J. Quantum Electron. 39, 459-467. [CrossRef]
  25. Chang, K. , and Xia, J.B.  (1998). Spatially Separated Excitons in Quantum-Dot Quantum Well Structures. Phys. Rev. B 57, 9780-9786. [CrossRef]
  26. Chua, Y.C. , Decuir, E.A. , Jr., Passmore, B.S. , Sharif, K.H. , Manasreha, M.O. , Wang, Z.M. , and Salamo, G.J.  (2004). Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors. Appl. Phys. Lett. 85, 1003-1005. [CrossRef]
  27. Guo, K.X. , and Yu, Y.B.  (2005). Nonlinear Optical Susceptibilities in Si/SiO2 Parabolic Quantum Dots. Chin. J. Physiol. 43, 932-940.
  28. Liu, J. , Bai, Y. , and Xiong, G.  (2004). Studies of the Second-order Nonlinear Optical Susceptibilities of GaN/AlGaN Quantum Well. Physica E (Amsterdam) 23, 70-74. [CrossRef]
  29. Rasooli Saghai, H. , Sadoogi, N. , and Rostami, A.  "Ultra-High Detectivity Room Temperature THZ IR-Photodetector Based on Resonant Tunneling Spherical Centered Defect Quantum Dot (RT-SCDQD)," Submitted to Solid state J. (2007).
  30. Mcdonald, S.A. , Konstantatos, G. , Zhang, S. , Cyr, P.W. , Klem, E.J.D. , Levina, L. , and Sargent, E.H.  (2005). Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138-142. [CrossRef] [PubMed]
  31. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina and E. H. sergeant, "Ultrasensitive solution-cast quantum dot photodetectors," Nature,  442, 180 - 183 (2006). [CrossRef] [PubMed]
  32. G. Konstantatos, J. Clifford, L. Levina and E. H. Sargent, "Sensitive solution-processed visible-wavelength photodetectors," Nature photonics,  1, 531-534 (2007). [CrossRef]
  33. Choi, K.K. The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997). [CrossRef]
  34. Levine, B.F.  (1993). Quantum -well infrared photodetectors. J. Appl. Phys. 74, R1-R81. [CrossRef]
  35. Steiner, T. Semiconductor Nanostructures for Optoelectronic Applications (Artech House, Inc. Boston, London, 2004).
  36. Su, X. , Chakrabarti, S. , Bhattacharya, P. , Ariyawansa, G. , and Perera, A.G.U.  (2005). A Resonant Tunneling Quantum-Dot Infrared Photodetector. IEEE J. Quantum Electron. 41, 974-979. [CrossRef]
  37. X. H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa and A. G. Perera, "Terahertz detection with tunneling quantum dot intersublevel photodetector," Appl. Phys. Lett. 89, 031117-1-031117-3 (2006). [CrossRef]
  38. Huang, G. , Yang, J. , Bhattacharya, P. , Ariyawansa, G. , and Perera, A.G.  (2008). A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range. Appl. Phys. Lett. 92, 011117. [CrossRef]
  39. Weerasekara, A.B. , Rinzan, M.B.M. , Matsik, S.G. , Perera, A.G.U. , Buchanan, M. , Liu, H.C. , von Winckel, G. , Stintz, A. , and Krishna, S.  (2007). n-Type GaAs/AlAs heterostructure detector with a 3.2 THz threshold frequency. Opt. Lett. 32, 1335-1337. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited