OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3560–3565

Magnetic plasmon modes in periodic chains of nanosandwiches

S.M. Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3560-3565 (2008)
http://dx.doi.org/10.1364/OE.16.003560


View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The magnetic plasmon (MP) modes in periodic chains of metallic trilayer nanostructures (nanosandwich) have been investigated numerically in optical frequency region. By employing the Fourier Transformation (FT) method, the MP modes excited in these chains can be observed directly. We have also used different exciting sources to excite the MP modes in the chain so that we can get clearer physics picture and richer information of the nanosandwich chain. For their long propagating lengths, the nanosandwich chains can well work as subwavelength waveguides to transport electromagnetic field. And one can easily tune the working frequencies and band width of the MP modes by changing the parameters of these chains.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 8, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: February 10, 2008
Published: March 3, 2008

Citation
S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, "Magnetic plasmon modes in periodic chains of nanosandwiches," Opt. Express 16, 3560-3565 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Citrin, "Coherent transport of excitons in quantum-dot chains: role of retardation," Opt. Lett. 20, 901-903 (1995). [CrossRef] [PubMed]
  2. M. L. Brogersma, J. H. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000);S. A. Maier, M. L. Brogersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices", Adv. Mater. 13, 1501-1505 (2001);S. A. Maiera and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  3. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  4. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006). [CrossRef]
  5. K. H. Fung, C. T. Chan, "Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis," Opt. Lett. 32, 973-975 (2007). [CrossRef] [PubMed]
  6. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007);M. Silveirinha, N. Engheta, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 97, 157403 (2006). [CrossRef] [PubMed]
  7. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic Plasmon Propagation Along a Chain of Connected Subwavelength Resonators at Infrared Frequencies," Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  8. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Phys. Rev. Lett. 95, 223902 (2005);M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006). [CrossRef] [PubMed]
  9. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  10. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 25112 (2007);G. Dolling, M. Wegener, A. Schadle, S. Bureger, and S. linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006).
  11. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006). [CrossRef] [PubMed]
  12. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, "Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains," Appl. Phys. Lett. 91, 133107 (2007). [CrossRef]
  13. J. Zhou, E. N. Economon, T. Koschny and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006). [CrossRef] [PubMed]
  14. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005);H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. express 15, 1076-1083 (2007). [CrossRef]
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006);S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006). [CrossRef] [PubMed]
  16. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004);V. Lomakin, M. Lu, and E. Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11828-11842 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited