OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3931–3948

Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements

Hyoun-Myoung Cho, Ping Yang, George W. Kattawar, Shaima L. Nasiri, Yongxiang Hu, Patrick Minnis, Charles Trepte, and David Winker  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3931-3948 (2008)
http://dx.doi.org/10.1364/OE.16.003931


View Full Text Article

Enhanced HTML    Acrobat PDF (2685 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (γ′) and layer-averaged depolarization ratio (δ) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low γ′ values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO δγ′ relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30°–60° and 60°–90° in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the δγ′ relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in the CALIPSO δγ′ relationship.

© 2008 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: February 15, 2008
Manuscript Accepted: March 4, 2008
Published: March 10, 2008

Citation
Hyoun-Myoung Cho, Ping Yang, George W. Kattawar, Shaima L. Nasiri, Yongxiang Hu, Patrick Minnis, Charles Trepte, and David Winker, "Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements," Opt. Express 16, 3931-3948 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds," Proc. SPIE 4893,1-11 (2003). [CrossRef]
  2. M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, "Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)," IEEE Trans. Geosci. Remote Sens. 30, 2-27 (1992). [CrossRef]
  3. B. A. Wielicki, E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, "Mission to planet earth: Role of clouds and radiation in climate," Bull. Am. Meteorol. Soc. 76, 2125-2153 (1995). [CrossRef]
  4. R. M. Schotland, K. Sassen, and R. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteor. 10, 1011-1017.
  5. K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). [CrossRef]
  6. M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: An application to contrails," Geophys. Res. Lett. 25, 309-312 (1998). [CrossRef]
  7. Y. Hu, "Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination," Geophys. Res. Lett. 34, doi:10.1029/2007/GL029584 (2007). [CrossRef]
  8. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, "The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory," Opt. Express 15, 5327-5332 (2007). [CrossRef] [PubMed]
  9. W. B. Rossow and R. A. Schiffer, "Advances in understanding clouds from ISCCP," Bull. Am. Meteorol. Soc. 80, 2261-2287 (1999). [CrossRef]
  10. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, "Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS," IEEE Trans. Geosci. Remote Sens. 41, 442-458 (2003). [CrossRef]
  11. S. Platnick, M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, "The MODIS cloud products: Algorithms and examples from Terra," IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003). [CrossRef]
  12. W. P. Menzel, R. A. Frey, B. A. Baum, and H. Zhang, "Could top properties and cloud phase algorithm theoretical basis document," in MODIS Algorithm theoretical basis document pp. 55. (2006).
  13. M. A. Vaughan, D. M. Winker, and K. A. Powell, "Part 2: Feature Detection and Layer Properties Algorithms," CALIOP Algorithm Theoretical Basis Document PC-SCI-202 Part 2, pp. 87 (2005).
  14. Y. Hu, Z. Liu, D. Winker, M. Vaughan, and V. Noel, "Simple relation between lidar multiple scattering and depolarization for water clouds," Opt. Lett. 31, 1809-1811 (2006). [CrossRef] [PubMed]
  15. K. Sassen and Y. Takano, "Parry arc: A polarization lidar, ray tracing, and aircraft case study," Appl. Opt. 39, 6738-6745 (2000). [CrossRef]
  16. V. Noel and K. Sassen, "Study of ice crystal orientation in ice clouds from scanning polarization lidar observations," J. Appl. Meteor. 44, 653-664 (2005). [CrossRef]
  17. K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001). [CrossRef]
  18. H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, "Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1," J. Quant. Spectrosc. Radiat. Transfer. 63, 521-543 (1999). [CrossRef]
  19. Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, "Sensitivity of depolarized lidar signals to cloud and aerosol particle properties," J. Quant. Spectrosc. Radiat. Transfer. 100, 470-482 (2006). [CrossRef]
  20. A. J. Heymsfield, L. M. Miloshevich, A. Slingo, K. Sassen and D. O. Starr, "An observational and theoretical study of highly supercooled altocumulus," J. Atmos. Sci. 48, 923-945 (1991). [CrossRef]
  21. P. R. Field, "Aircraft observations of ice crystal evolution in an altostratus cloud," J. Atmos. Sci. 56, 1925-1941 (1999). [CrossRef]
  22. R. P. Fleishauer, V. E. Larson, and T. H. Vonder Haar, "Observed microphysical structure of midlevel, mixed-phase clouds," J. Atmos. Sci. 59, 1779-1804 (2002). [CrossRef]
  23. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the atmosphere," (third edition) AFCRL-72-0497, Air Force Cambridge Research Laboratories (1972).
  24. C. M. Naud, B. A. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, "Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap," Remote Sens. Environ. 107, 200-210 (2007). [CrossRef]
  25. R. T. Marchand, T. P. Ackerman, and C. Moroney, "An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers," J. Geophys. Res. 112, D06204, doi:10.1029/2006JD007091 (2007). [CrossRef]
  26. E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, and B. H. Kahn, "Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals," Geophys. Res. Lett. 34, L17811 (2007). [CrossRef]
  27. G. M. McFarquar and A. J. Heymsfield, "Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment," J. Atmos. Sci. 53, 2401-2423 (1996). [CrossRef]
  28. A. J. Heymsfield and J. Iaquinta, "Cirrus Crystal Terminal Velocities," J. Atmos. Sci. 57, 916-938 (2000). [CrossRef]
  29. S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, "Assessing cloud phase conditions," J. Appl. Meteorol. 40, 1967-1764 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited