OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4059–4068

Degenerate four wave mixing in solid core photonic bandgap fibers

Per Dalgaard Rasmussen, Jesper Lægsgaard, and Ole Bang  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4059-4068 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nm. The possibility of tuning the efficiency of the parametric gain by varying the temperature is also considered. The results are verified by numerical simulations of pulse propagation.

© 2008 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: January 23, 2008
Revised Manuscript: March 7, 2008
Manuscript Accepted: March 7, 2008
Published: March 11, 2008

Per Dalgaard Rasmussen, Jesper Lægsgaard, and Ole Bang, "Degenerate four wave mixing in solid core photonic bandgap fibers," Opt. Express 16, 4059-4068 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys.  78, 1135 (2006). [CrossRef]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic bandgap fiber," in Optical Fiber Communications Conference, Post Conference vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington, D.C., 2002), 466-468.
  4. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-20-2589. [CrossRef] [PubMed]
  5. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  6. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-1-309. [CrossRef] [PubMed]
  7. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  8. K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defectedcore photonic crystal fiber with low confinement losses," Opt. Express 13, 8365-8371 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8365. [CrossRef] [PubMed]
  9. K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002). [CrossRef]
  10. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, "Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003). [CrossRef] [PubMed]
  11. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005). [CrossRef] [PubMed]
  12. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-8-2977. [CrossRef] [PubMed]
  13. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203,901 (2001).
  14. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004). URL >http://www.opticsexpress.org/abstract.cfm?URI=oe-12-1-124. [CrossRef] [PubMed]
  15. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, "High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber," Opt. Lett. 32, 337-339 (2007). [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics, third edition (Academic Press, San Diego, 2001).
  17. Comsol Multiphysics 3.3a (2007) URLwww.comsol.com.
  18. Cargille Laboratories, Specifications of Cargille Optical Liquids URL www.cargille.com.
  19. P. Steinvurzel, C. M. de Sterke, B. J. Eggleton, B. T. Kuhlmey, and M. J. Steel, "Mode field distributions in solid core photonic bandgap fibers," Opt. Commun. 263, 207-213 (2006). [CrossRef]
  20. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. St. J. Russell, "Scaling laws and vector effects in bandgap-guiding fibres," Opt. Express 12, 69-74 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-1-69. [CrossRef] [PubMed]
  21. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5688. [CrossRef] [PubMed]
  22. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-10-14-609. [PubMed]
  23. T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Phys. D 16, L97 (1983). [CrossRef]
  24. R. W. Boyd, Nonlinear Optics, second edition (Academic Press, San Diego, 2003).
  25. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076 (1990). [CrossRef] [PubMed]
  26. J. Laegsgaard, "Mode profile dispersion in the generalised nonlinear Schr¨odinger equation," Opt. Express 15, 16,110-16,123 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16110. [CrossRef]
  27. S. Coen, D. A. Wardle, and J. D. Harvey, "Observation of Non-Phase-Matched Parametric Amplification in Resonant Nonlinear Optics," Phys. Rev. Lett. 89, 273901 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited