OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4121–4129

Wavelength dependence of femtosecond laser ablation threshold of corneal stroma

G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4121-4129 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure the surface ablation threshold fluence of porcine corneal stroma for 100 fs laser pulses, with wavelengths between 800 nm and 1450 nm, generated by a Ti:sapphire-pumped optical parametric amplifier. The ablation threshold was found to vary only slightly within this wavelength range, between 1.5 and 2.2 J/cm2. The data suggest a rapid increase of the ablation threshold for wavelengths up to about 1000 nm, followed by a plateau for longer wavelengths. This behavior is partly confirmed by a simple theoretical model of the ablation process. The influence of the wavelength on the physics of surface ablation is discussed on the basis of the model.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4890) Materials : Organic materials
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 10, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: January 27, 2008
Published: March 12, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, "Wavelength dependence of femtosecond laser ablation threshold of corneal stroma," Opt. Express 16, 4121-4129 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract. Refract. Surg. 31, 97-105 (2005). [CrossRef] [PubMed]
  2. P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract. Refract. Surg. 30, 26-32 (2004). [CrossRef] [PubMed]
  3. D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Avantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol. 28, 535-46 (2005). [CrossRef] [PubMed]
  4. I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology clinics of North America  14, 347-355, viii-ix (2001). [PubMed]
  5. B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005). [CrossRef] [PubMed]
  6. M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-33 (2005). [CrossRef] [PubMed]
  7. M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005). [CrossRef] [PubMed]
  8. B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003). [CrossRef] [PubMed]
  9. T. Sami, L. Yaoming, S. Sima,S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005). [CrossRef]
  10. J. Y. Kim, M. J. Kim, T. Kim, H. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmo. Visual Sci. 47, 599-604 (2006). [CrossRef]
  11. B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmo. Visual Sci. 47, 2803-2811 (2006). [CrossRef]
  12. A. Vogel, J. Noak, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B (Condensed Matter) 53, 1749-1761 (1996). [CrossRef]
  14. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998). [CrossRef]
  15. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999). [CrossRef]
  16. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, "Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling," J. Opt. Soc. Am. A 24, 1562-68 (2007). [CrossRef]
  17. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996). [CrossRef]
  18. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, "Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals," Phys. Rev. B 73, 054105 (2006). [CrossRef]
  19. B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of Transient Changes in Corneal Hydration Using Confocal Raman Spectroscopy," Cornea 22, 263-370 (2003). [CrossRef]
  20. T. Q. Jia, private communication.
  21. T. J. T. P. van den Berg and H. Spekreije, "Near infrared light absorption in the human eye media," Vision Res. 37, 249-253 (1997). [CrossRef] [PubMed]
  22. C. Sarpe-Tudorian, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, "Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses," Appl. Phys. Lett. 88, 261109 (2006). [CrossRef]
  23. L. V. Keldysh,"Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).
  24. R. W. P. McWhirter, "Spectral Intensities," in Plasma Diagnostic Techniques, R. H. Huddlestone and S.L. Leonard, Eds. (Academic press, New York, 1965).
  25. B. K. Ridley, Quantum processes in semiconductors (Oxford University Press, Oxford, 1999).
  26. D. W. Leonard and K.M. Meek, "Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma," Biophys. J. 72, 1382-1387 (1997). [CrossRef] [PubMed]
  27. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. L. Blanc, and A. Mysyrowicz, "Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation," Opt. Commun. 119, 479-484 (1995). [CrossRef]
  28. C. A. Sacchi, "Laser-induced electric breakdown in water," J. Opt. Soc. Am. B. 8, 337-45 (1991). [CrossRef]
  29. D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-80 (1992). [CrossRef]
  30. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, "Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica," Opt. Lett. 30, 320-22 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited