OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4270–4277

Reflection minimization at two-dimensional photonic crystal interfaces

Sun-Goo Lee, Jin-sun Choi, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4270-4277 (2008)
http://dx.doi.org/10.1364/OE.16.004270


View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to design antireflection structures to minimize the reflection of light beams at the interfaces between a two-dimensional photonic crystal and a homogeneous dielectric. The design parameters of the optimal structure to give zero reflection can be obtained from the one-dimensional antireflection coating theory and the finite-difference time-domain simulations. We examine the performance of a Mach-Zehnder interferometer utilizing the self-collimated beams in two-dimensional photonic crystals with and without the optimal antireflection structure introduced. It is shown that the optimal antireflection structure significantly improves the performance of the device.

© 2008 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(310.1210) Thin films : Antireflection coatings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 28, 2008
Revised Manuscript: February 29, 2008
Manuscript Accepted: March 2, 2008
Published: March 13, 2008

Citation
Sun-Goo Lee, Jin-sun Choi, Jae-Eun Kim, Hae-Yong Park, and Chul-Sik Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express 16, 4270-4277 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  2. J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002). [CrossRef]
  3. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998). [CrossRef]
  6. D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, "Self-guiding in two-dimensional photonic crystals," Opt. Express 11, 1203-1211 (2003). [CrossRef] [PubMed]
  7. D.W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, "Dispersion-based optical routing in photonic crystals," Opt. Lett. 29, 50-52 (2004). [CrossRef] [PubMed]
  8. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljaciv, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and Erich P. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93-96 (2006). [CrossRef] [PubMed]
  9. X. Yu and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]
  10. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Line-defect-induced bending and splitting of selfcollimated beams in two-dimensional photonic crystals," Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  11. M.-W. Kim, S.-G. Lee, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Experimental demonstration of bending and splitting of self-collimated beams in two-dimensional photonic crystals," Appl. Phys. Lett. 90, 113121 (2007). [CrossRef]
  12. S. Shi, A. Sharkawy, C. Chen, D. Pustai, and D. Prather, "Dispersion-based beam splitter in photonic crystals," Opt. Lett. 29, 617-619 (2004). [CrossRef] [PubMed]
  13. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdr’e, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, "Selfcollimating photonic crystal polarization beam splitter," Opt. Lett. 32, 530-532 (2007). [CrossRef] [PubMed]
  14. Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). [CrossRef]
  15. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a twodimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  16. V. P. Parimi,W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404 (2003). [CrossRef] [PubMed]
  17. T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005). [CrossRef] [PubMed]
  18. K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551 (2002). [CrossRef]
  19. T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001). [CrossRef]
  20. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev. E 69, 046609 (2004). [CrossRef]
  21. B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystal," Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  22. H. A. Macleod, Thin-film Optical Filters, (Adam Hilger Ltd, Bristol, 1986). [CrossRef]
  23. J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, "Systematic design of antireflection coating for semiinfinite one-dimensional photonic crystals using Bloch wave expansion," Appl. Phys. Lett. 82, 7-9 (2003). [CrossRef]
  24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).
  25. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, 2002).
  26. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, "Photonic crystal Mach-Zehnder interferometer based on self-collimation," Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  27. Y. Zhang, Y. Zhang, and B. Li, "Optical switches and logic gates based on self-collimated beams in twodimensional photonic crystals," Opt. Express 15, 9287-9292 (2007). [CrossRef] [PubMed]
  28. J. -P. Berenger, "A perfectly matched layer for the absorption of electomagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited