OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4366–4374

An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators

Ruey-Ching Twu, Hao-Yang Hong, and Hsuan-Hsien Lee  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 4366-4374 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we develop an optical measurement system with capabilities of phase unwrapping, real-time and long-term monitoring for measuring a phase drift caused by photorefractive effects in lithium niobate phase modulators. To extract the phase-drift variations, the measurement setup uses a homodyne interferometer with a phase modulation and a Fast Fourier Transform (FFT) demodulation scheme. The phase-drift characteristics of a traditional Ti-indiffused and a Zn-indiffused phase modulator have been investigated under different applied voltages and throughput powers. These experiments were conducted as a proof-of-concept to demonstrate that the apparatus worked successfully to measure the phase drift of a device in the presence of photorefractive effects. The results indicate that the Zn-indiffused phase modulators have better photorefractive stability than the Ti-indiffused phase modulators.

© 2008 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(160.3730) Materials : Lithium niobate

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 29, 2008
Revised Manuscript: March 11, 2008
Manuscript Accepted: March 11, 2008
Published: March 14, 2008

Ruey-Ching Twu, Hao-Yang Hong, and Hsuan-Hsien Lee, "An optical homodyne technique to measure photorefractive-induced phase drifts in lithium niobate phase modulators," Opt. Express 16, 4366-4374 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981). [CrossRef]
  2. T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992). [CrossRef]
  3. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, "1.5-?m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999). [CrossRef]
  4. G. Zhang, G. Zhang, S. Liu, J. Xu, G. Tian, and Q. Sun, "Theoretical study of resistance against light-induced scattering in LiNbO3:M (M = Mg2+,Zn2+,In3+,Sc3+) crystals," Opt. Lett. 22, 1666-1668 (1997). [CrossRef]
  5. Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3: In," Appl. Phys. Lett. 66, 280-281 (1995). [CrossRef]
  6. P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, "Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals," Opt. Express 15, 14171-14176 (2007). [CrossRef] [PubMed]
  7. C. H. Huang and L. McCaughan, "980-nm-pumped Er-doped LiNbO3 waveguide amplifier: a comparison with 1484-nm pumping," J. Selected Topics in Quantum Electron. 2, 367-372 (1996). [CrossRef]
  8. L. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005). [CrossRef] [PubMed]
  9. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993). [CrossRef] [PubMed]
  10. O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, "Comparison of photorefractive damage effects in LiNbO3, LiTaO3, and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997). [CrossRef]
  11. R. A. Becker, "Thermal fixing of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility," Appl. Phys. Lett. 45, 121-123 (1984). [CrossRef]
  12. H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994). [CrossRef]
  13. S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985). [CrossRef]
  14. M. Levesque, M. Têtu, P. Tremblay, and M. Chamberland, "A novel technique to measurement the dynamic response of an optical phase modulator," IEEE Trans. Instrum. Meas. 44, 952-957 (1995). [CrossRef]
  15. B. Sepúlveda, G. Armelles, and L. M. Lechuga, "Magneto-optical phase modulation in integrated Mach-Zehnder interferometer sensors," Sens. Actuators A-Phys. 134, 339-347 (2007). [CrossRef]
  16. V. S. Sudarshanam and K. Srinivasan, "Linear readout of dynamic phase change in a fiber-optic homodyne interferometer," Opt. Lett. 14, 140-143 (1989). [CrossRef] [PubMed]
  17. R. C. Twu, H. H. Lee, H. Y. Hong, and C. Y. Yang, "A novel Zn-indiffused mode converter in x-cut lithium niobate," Opt. Express 15, 15576-15582 (2007). [CrossRef] [PubMed]
  18. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, "Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals," Appl. Phys. Lett. 84, 1880-1882 (2004). [CrossRef]
  19. M. Carrascosa, J. Villarroel, J. Carnicero, A. Garcia-Cabanes, and J. M. Cabrera, "Understanding light intensity thresholds for catastrophic optical damages in LiNbO3," Opt. Express 16, 115-120 (2008). [CrossRef] [PubMed]
  20. M. Falk, Th. Woike, and K. Buse, "Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation," Appl. Phys. Lett. 90, 251912 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited