OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4499–4506

Plasmon guided modes in nanoparticle metamaterials

R. Sainidou and F. J. García de Abajo  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4499-4506 (2008)
http://dx.doi.org/10.1364/OE.16.004499


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface modes in nanostructured metallic metamaterial films are reported showing larger confinement than plasmons in metallic waveguides of similar dimensions, but in contrast to plasmons, the new modes have TE polarization. The metamaterial, formed by planar arrays of nearly-touching metallic nanoparticles, behaves as a high-index dielectric for the noted polarization, thus yielding well confined guided modes. Our results for silver particles in silica support a new paradigm for TE surface-wave guiding in unconnected nanostructured metallic systems complementary to TM plasmon waves in continuous metal surfaces.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 10, 2008
Manuscript Accepted: February 19, 2008
Published: March 18, 2008

Citation
R. Sainidou and F. J. Garcia de Abajo, "Plasmon guided modes in nanoparticle metamaterials," Opt. Express 16, 4499-4506 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, New York, 2004). [CrossRef]
  2. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  3. P. Berini, Phys. Rev. B 61, 10484 (2000); 63, 125417 (2001). [CrossRef]
  4. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097,401 (2006). [CrossRef]
  5. R. Ulrich and M. Tacke, "Submillimeter waveguiding on periodic metal structure," Appl. Phys. Lett. 22, 251-253 (1972). [CrossRef]
  6. A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005). [CrossRef] [PubMed]
  7. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  8. F. J. Garcia de Abajo and J. J. Saenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233,901 (2005).
  9. F. J. Garcia de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  10. In virtue of Babinet’s principle, the modes of an array of perfectly-conducting coplanar disks have rigorously the same dispersion relation as the modes of the complementary hole array.
  11. N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998); 132, 189 (2000). [CrossRef]
  12. D. R. McKenzie and R. C. McPhedran, "Exact modelling of cubic lattice permittivity and conductivity," Nature 265, 128-129 (1977). [CrossRef]
  13. J. T. Shen, P. B. Catrysse, and S. Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197,401 (2005). [CrossRef]
  14. S. Riikonen, I. Romero, and F. J. Garcia de Abajo, "Plasmon tunability in metallodielectric metamaterials," Phys. Rev. B 71, 235,104 (2005). [CrossRef]
  15. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  16. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). [CrossRef] [PubMed]
  17. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  18. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  19. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: The next chip-scale technology," Mater. Today 9, 20-27 (2006). [CrossRef]
  20. To a first-order approximation, the trapping coefficients of Figs. 1(b) and 1(f) can be added to describe particle arrays lying on a plasmon-supporting metal rather than a perfect conductor.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited