OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 4507–4519

Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays

Yong Zeng, Ying Fu, Mats Bengtsson, Xiaoshuang Chen, Wei Lu, and Hans Ågren  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 4507-4519 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of nanosize quantum-dot (QD) arrays are found to vary significantly around the exciton resonance frequency of the QDs. In order to simulate the interactions between electromagnetic waves and QD arrays, a general auxiliary-differential-equation, finite-difference time-domain approach is introduced and utilized in this article. Using this numerical method, the exciton-polariton resonances of single-layer and double-layer GaAs QD arrays are studied. The optical properties of a single-layer QD array are found to be characterized by the Mie resonance of its constituent QDs, while a double-layer QD array is characterized by the quasi-dipole formed by two QDs positioned in each of the two layers.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance

ToC Category:

Original Manuscript: November 27, 2007
Revised Manuscript: January 23, 2008
Manuscript Accepted: January 23, 2008
Published: March 18, 2008

Yong Zeng, Ying Fu, Mats Bengtsson, Xiaoshuang Chen, Wei Lu, and Hans Ågren, "Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays," Opt. Express 16, 4507-4519 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005). [CrossRef]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-93 (2006). [CrossRef] [PubMed]
  3. Y. Fu, M. Willander, E. L. Ivchenko, "Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices," Superlatt.Microstruct. 27, 255 (2000). [CrossRef]
  4. Y. Fu, E. Berglind, L. Thyl’en, H. ° Agren, "Optical transmission and waveguiding by excitonic quantum dot lattices," J. Opt. Soc. Am. B 23, 2441 (2006). [CrossRef]
  5. Y. Zeng, Y. Fu, X. Chen, W. Lu, H. Agren, "Complete band gaps in three-dimensional quantum dot photonic crystals," Phys. Rev. B 74, 115325 (2006). [CrossRef]
  6. Y. Zeng, X. Chen, W. Lu, Y. Fu, "Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices," Eur. Phys. J. B 49, 313 (2006). [CrossRef]
  7. H. Ajiki, T. Tsuji, K. Kawano, K. Cho, "Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal," Phys. Rev. B 66, 245322 (2002). [CrossRef]
  8. H. Ajiki, T. Kaneno, H. Ishihara, "Vacuum-field Rabi splitting in semiconducting core-shell microsphere," Phys. Rev. B 73, 155322 (2006). [CrossRef]
  9. H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, "Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence," Nano Lett. 6, 2622 (2006). [CrossRef] [PubMed]
  10. C. Wang, L. Huang, B. A. Parviz, L. Y. Lin, "Subdiffraction Photon Guidance by Quantum-Dot Cascades," Nano Lett. 6, 2549 (2006). [CrossRef] [PubMed]
  11. G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann, D. Bimberg, "Effective boundary conditions for planar quantum dot structures," Phys. Rev. B 64, 125326 (2001). [CrossRef]
  12. O. Voskoboynikov, C. M. J. Wijers, J. L. Liu, C. P. Lee, "Magneto-optical response of layers of semiconductor quantum dots and nanorings," Phys. Rev. B 71, 245332 (2005). [CrossRef]
  13. V. Bondarenko, M. Zaluzny, Y. Zhao, "Interlevel electromagnetic response of systems of spherical quantum dots," Phys. Rev. B 71, 115304 (2005). [CrossRef]
  14. L. Belleguie, S. Mukamel, "Nonlocal electrodynamics of arrays of quantum dots," Phys. Rev. B 52, 1936 (1995). [CrossRef]
  15. X. Zhang, P. Sharma, "Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects," Phys. Rev. B 72, 195345 (2005). [CrossRef]
  16. F. Thiele, C. Fuchs, R. Baltz, "Optical absorption in semiconductor quantum dots: Nonlocal effects," Phys. Rev. B 64, 205309 (2001). [CrossRef]
  17. S. Hughes, "Coupled-cavity QED using planar photonic crystals," Phys. Rev. Lett. 98, 083603 (2007). [CrossRef] [PubMed]
  18. L. C. Andreani, D. Gerace, M. Agio, "Exciton-polaritons and nanoscale cavities in photonic crystal slab," Phys. Status Solidi B. 242, 2197 (2005). [CrossRef]
  19. C. Wang, L. Y. Lin, B. A. Parviz, "Modeling and simulation for a nano-photonic quantum dot waveguide fabricated by DNA-directed self-assembly," J. Sel. Top. Quantum Electron. 11, 500 (2005). [CrossRef]
  20. L. Huang, C. Wang, L. Y. Lin, "A comparison of crosstalk effects between colloidal quantum dot waveguides and conventional waveguides," Opt. Lett. 32, 235 (2007). [CrossRef] [PubMed]
  21. S. Nojima, "Optical response of excitonic polaritons in photonic crystals," Phys. Rev. B 59, 5662 (1999). [CrossRef]
  22. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1986).
  23. R. Zeyher, J. L. Birman, and W. Brenig, "Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields," Phys. Rev. B 6, 4613 (1972). [CrossRef]
  24. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Pergamon Press 1959). [PubMed]
  25. A. Taflove, S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method, Second Edition, (Artech House Boston 2000).
  26. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys. 89, 5815 (2001). [CrossRef]
  27. T. Iida, H. Ishihara, "Force control between quantum dots by light in polaritonic molecule states," Phys. Rev. Lett. 97, 117402 (2006). [CrossRef] [PubMed]
  28. G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, N. N. Ledentsov, I. L. Krestnikov, Zh. I. Alferov, D. Bimberg, "Polarization splitting of the gain band in quantum wire and quantum dot arrays," Phys. Rev. B 59, 12275 (1999). [CrossRef]
  29. K. Kempa, R. Ruppin, J. B. Pendry, "Electromagntic response of a point-dipole crystal," Phys. Rev. B 72, 205103 (2005). [CrossRef]
  30. J. A. Klugkist, M. Mostovoy, J. Knoester, "Mode Softening, Ferroelectric Transition, and Tunable Photonic Band Structures in a Point-Dipole Crystal," Phys. Rev. Lett. 96, 163903 (2006). [CrossRef] [PubMed]
  31. F. J. Taylor, Principles of signals and systems, (McGraw-Hill, New York, 1994).
  32. J. A. Pereda, L. A. Vielva, A. Vegas, A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods," IEEE Microwave Guid. Wave Lett. 2, 431 (1992). [CrossRef]
  33. Y. Hua, T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propag. 37, 229 (1989). [CrossRef]
  34. S. Dey, R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation," IEEE Microwave Guid. Wave Lett. 8, 415 (1998). [CrossRef]
  35. W. Guo, W. Li, Y. Huang, "Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation," IEEE Microwave and Wireless Components Lett. 11, 223 (2001). [CrossRef]
  36. G. A. Baker, Essentials of Pad’e approximants, (Academic Press, New York, 1975).
  37. V. S. C. Manga Rao, S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited