OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 5022–5034

Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host

Òscar Silvestre, Joan Grau, Maria Cinta Pujol, Jaume Massons, Magdalena Aguiló, Francesc Díaz, Mieczyslaw Tadeusz Borowiec, Andrzej Szewczyk, Maria Urszula Gutowska, Marta Massot, Agustín Salazar, and Valentin Petrov  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5022-5034 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal analysis of the monoclinic solid state laser host KLu(WO4)2 is presented. The specific heat was measured by the relaxation method in the temperature range from 1.9 to 385 K: its value at room temperature is 0.324 J/gK. The Debye temperature and the sound velocity amount to 303±3 K and 3734 m/s. The linear thermal expansion tensor was measured by X-ray powder diffraction from room temperature up to 773 K. The eigenvalues of this tensor are α11=8.98×10-6 K-1, α22=3.35×10-6 K-1, and α33=16.72×10-6 K-1, with the maximum value in the a-b crystallographic plane, at 31.94° from the Ng principal optical axis. The thermal diffusivity and its anisotropy in the temperature range between 300 and 500 K were measured by the pyroelectric method to determine the thermal conductivity tensor. The eigenvalues of the thermal conductivity are κ11=2.95 Wm-1K-1, κ22=2.36 Wm-1K-1, and κ33=4.06 Wm-1K-1, with the maximum value along a direction again in the a-b crystallographic plane, at 40.75° from the Ng principal optical axis. Simulation of the temperature distribution in a bulk sample of KLu(WO4)2 with dimensions 3×3×3 mm3 shows that pump and laser beam directions along the Np principal optical axis in terms of thermal effects are preferable because the propagation is along a quasi-isothermal path.

© 2008 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 30, 2007
Revised Manuscript: February 15, 2008
Manuscript Accepted: February 18, 2008
Published: March 27, 2008

Òscar Silvestre, Joan Grau, Maria Cinta Pujol, Jaume Massons, Magdalena Aguiló, Francesc Díaz, Mieczyslaw T. Borowiec, Andrzej Szewczyk, Maria U. Gutowska, Marta Massot, Agustín Salazar, and Valentin Petrov, "Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host," Opt. Express 16, 5022-5034 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes, (CRC Press, New York, 1996).
  2. J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, "Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes," Opt. Lett. 32, 2016-2018 (2007). [CrossRef] [PubMed]
  3. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006). [CrossRef]
  4. U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald, R. M. Sole, M. Aguilo, F. Diaz, and V. Petrov, "Laser operation of epitaxially grown Yb:KLu(WO4)2-KLu(WO4)2 composites with monoclinic crystalline structure," IEEE J. Quantum Electron. 41, 408-414 (2005). [CrossRef]
  5. Ò. Silvestre, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, V. Petrov, and U. Griebner, "CW laser operation of KLu0.945Tm0.055(WO4)2-KLu(WO4)2 epilayers near 2 μm," IEEE J. Quantum Electron. 43, 257-260 (2007). [CrossRef]
  6. M. C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Diaz, and M. Aguilo, "Structural redermination, thermal expansion and refractive indices of KLu(WO4)2," J. Appl. Cryst. 39, 230-236 (2006). [CrossRef]
  7. W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text, (Springer-Verlag, New York, 2003).
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514-1-14 (2005). [CrossRef]
  9. M. T. Borowiec, A. Szewczyk, T. Zayarnyuk, A. Pikul, D. Kaczorowski, E. E. Zubov, M. Gutowska, V. P. Dyakonov, M. Barański, H. Szymczak, M. C. Pujol, M. Aguiló, and F. Díaz, "The specific heat capacity and magnetic phase transitions for monoclinic rare earth double tungstate," submitted to New J. Phys. (2008).
  10. J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, and M. Ba, "Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals," Appl. Phys. Lett. 87, 061104-1-3 (2005). [CrossRef]
  11. Y. Sato and T. Taira, "The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12, measured by quasi-one-dimensional flash method," Opt. Express 14,10528-10536 (2006). [CrossRef] [PubMed]
  12. T. Kushida, "Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates," Phys. Rev. 185, 500-508 (1969). [CrossRef]
  13. X. Chen and B. Di Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal," J. Appl. Phys. 75, 1710-1714 (1994). [CrossRef]
  14. D. D. L. Chung, P. W. DeHaven, H. Arnold, and D. Ghosh, X-ray Diffraction at Elevated Temperatures. A Method for In Situ Process Analysis, (VCH, New York, 1993).
  15. M. C. Pujol, X. Mateos, R. Solé, J. Massons, Jna. Gavaldà, F. Díaz, and M. Aguilo, "Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals," Mater. Sci. Forum 378-381, 710-715 (2001). [CrossRef]
  16. A. Authier (Ed.), International Tables for Crystallography, Volume D: Physical Properties of Crystals (The International Union of Crystallography, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003).
  17. M. Chirtoc, D. Dadarlat, D. Bicanic, J. S. Antoniow, and M. Egée, Progress in Photothermal and Photoacoustic Science and Technology (vol 3, ed. by A Mandelis and P Hess, Bellingham, WA, SPIE Optical Engineering Press, 1997).
  18. S. Delenclos, M. Chirtoc, A. H. Sahraoui, C. Kolinsky, and J. M. Buisine, "Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method," Rev. Sci. Instrum. 73, 2773-2780 (2002). [CrossRef]
  19. R. E. Hummel, Electronic Properties of Materials, (Springer-Verlag, New York, 1985).
  20. I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997). [CrossRef]
  21. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett. 831355-1357 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited