OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 7 — Mar. 31, 2008
  • pp: 5035–5047

Nonlinear optics in hollow-core photonic bandgap fibers

Amar R. Bhagwat and Alexander L. Gaeta  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5035-5047 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Nonlinear Optics in Novel Media and Materials

Original Manuscript: January 28, 2008
Revised Manuscript: March 21, 2008
Manuscript Accepted: March 22, 2008
Published: March 28, 2008

Virtual Issues
Focus Serial: Frontiers of Nonlinear Optics (2007) Optics Express

Amar R. Bhagwat and Alexander L. Gaeta, "Nonlinear optics in hollow-core photonic bandgap fibers," Opt. Express 16, 5035-5047 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006). [CrossRef]
  3. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992).
  4. K. Nagayama, T. Saitoh, M. Kakui, K. Kawasaki, M. Matsui, H. Takamizawa, H. Miyaki, Y. Ooga, I. Tsuchiya, and Y. Chigusa, "Ultra low loss (0.151 dB/km) fiber and its impact on submarine transmission systems," OFC2002, Paper FA10-1.
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001).
  6. T. Abel, J. Hirsch, and J. A. Harrington, "Hollow glass waveguides for broadband infrared transmission," Opt. Lett. 19, 1034-1036 (1994). [CrossRef] [PubMed]
  7. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  8. P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelberg, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature (London) 430, 654-657 (2004). [CrossRef] [PubMed]
  9. P. W. Anderson, "Absence of diffusion in certain random lattices," Phys. Rev. 109, 1492-1505 (1958). [CrossRef]
  10. N. F. Mott, "Electrons in disordered structures," Adv. Phys. 16, 49-144 (1967). [CrossRef]
  11. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  12. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  13. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987). [CrossRef] [PubMed]
  14. P. R. Villeneuve and M. Piche, "Photonic band gaps in two-dimensional square and hexagonal lattices," Phys. Rev. B 46, 4969-4972 (1992). [CrossRef]
  15. A. A. Maradudin and A. R. McGurn, "Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium," J. Mod. Opt. 41, 275-284 (1994). [CrossRef]
  16. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  17. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  18. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature (London) 424, 657-659 (2003). [CrossRef] [PubMed]
  19. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236. [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).
  21. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  22. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, "Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004). [CrossRef] [PubMed]
  23. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, "Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber," Phys. Rev. Lett. 95, 213903 (2005). [CrossRef] [PubMed]
  24. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and photonic guidance of multioctave optical-frequency combs," Science 318, 1118-1121 (2007). [CrossRef] [PubMed]
  25. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge, Cambridge, 1997).
  26. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, "Enhanced four-wave mixing in a hollow-core photoniccrystal fiber," Opt. Lett. 28, 1448-1450 (2003). [CrossRef] [PubMed]
  27. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, "Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber," Phys. Rev. A 70, 045802 (2004). [CrossRef]
  28. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, "Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers," J. Opt. Soc. Am. B 22, 2049-2053 (2005). [CrossRef]
  29. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3507. [CrossRef] [PubMed]
  30. A. Hasegawa and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion," Appl. Phys. Lett. 23, 142-144 (1973). [CrossRef]
  31. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett. 45, 1095-1098 (1980). [CrossRef]
  32. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  33. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, "Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-835. [CrossRef] [PubMed]
  34. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6153. [CrossRef] [PubMed]
  35. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7126. [CrossRef] [PubMed]
  36. S. O. Konorov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Self-channeling of subgigawatt femtosecond laser pulses in a ground-state waveguide induced in the hollow core of a photonic crystal fiber," Opt. Lett. 29, 1521-1523 (2004). [CrossRef] [PubMed]
  37. K. D. Moll, A. L. Gaeta, and G. Fibich, "Self-similar optical wave collapse: Observation of the Townes profile," Phys. Rev. Lett. 90, 203902 (2003). [CrossRef] [PubMed]
  38. A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, "Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers," Phys. Rev. A 76, 053811 (2007). [CrossRef]
  39. J. C. Knight, "Photonic crystal fibers and fiber lasers (Invited)," J. Opt. Soc. Am. B 24, 1661-1668 (2007). [CrossRef]
  40. H. Lim, F. O. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1497. [PubMed]
  41. H. Lim and F. W. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2231. [CrossRef] [PubMed]
  42. H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Opt. Express 13, 3460-3464 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3460. [CrossRef] [PubMed]
  43. B. Ortac¸, M. Plotner, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers," Opt. Express 1515595-15602 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15595. [CrossRef]
  44. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Teleportation and Quantum Computation (Springer, New York, 2000).
  45. M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003). [CrossRef]
  46. H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996). [CrossRef] [PubMed]
  47. S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  48. T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature (London) 438, 833-836 (2005). [CrossRef] [PubMed]
  49. K. -J. Boller, A. Imamoglu, and S. E. Harris "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991). [CrossRef] [PubMed]
  50. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  51. R. El Hachtouki and J. Vander Auwera, "Absolute line intensities in acetylene: The 1.5-μm region," J. Mol. Spectrosc. 216, 355-362 (2002). [CrossRef]
  52. F. Fenabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5694. [CrossRef]
  53. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10475. [CrossRef] [PubMed]
  54. F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006). [CrossRef]
  55. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, "Photonic band-gap fiber gas cell fabricated using femtosecond micromachining," Opt. Express 15, 6690-6695 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-11-6690. [CrossRef] [PubMed]
  56. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006). [CrossRef] [PubMed]
  57. J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, 213902 (2007). [CrossRef] [PubMed]
  58. J. C. Camparo, "Alkali hI·Si wall relaxation in dichlorodimethylsilane coated resonance cells," J. Chem. Phys. 86, 1533-1539 (1987). [CrossRef]
  59. M. A. Bouchiat and J. Brossel, "Relaxation of optically pumped Rb atoms on paraffin-coated walls," Phys. Rev. 147, 41-54 (1966). [CrossRef]
  60. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006). [CrossRef] [PubMed]
  61. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, "Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber," Opt. Lett. 32, 1323-1325 (2007). [CrossRef] [PubMed]
  62. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  63. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental observation of optically trapped atoms," Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef] [PubMed]
  64. F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Express 10, 1195-1203 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1195. [PubMed]
  65. S. Mandal and D. Erickson, "Optofluidic transport in liquid core waveguiding structures," Appl. Phys. Lett. 90, 184103 (2007). [CrossRef]
  66. T. Takekoshi and R. J. Knize, "Optical guiding of atoms through a hollow-core photonic band-gap fiber," Phys. Rev. Lett. 98, 210404 (2007). [CrossRef] [PubMed]
  67. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature (London) 436, 87-90 (2005). [CrossRef] [PubMed]
  68. A. L’Huillier, K. J. Schafer, and K. C. Kulander, "Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching," Phys. Rev. Lett. 66, 2200-2203 (1991). [CrossRef] [PubMed]
  69. P. B. Corkum, "Plasma perspective on strong-field multiphoton ionization," Phys. Rev. Lett. 71, 1994-1997 (1993). [CrossRef] [PubMed]
  70. E. E. Serebryannikov, D. von der Linde, and A. M. Zheltikov, " Phase-matching solutions for high-order harmonic generation in hollow-core photonic-crystal fibers," Phys. Rev. E,  70, 066619 (2004). [CrossRef]
  71. P. M. Paul, T. O. Clatterbuck, C. Lynga, P. Colosimo, L. F. DiMauro, P. Agostini and K. C. Kulander, "Enhanced high harmonic generation from an optically prepared excited medium," Phys. Rev. Lett. 94, 113906 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited